209 resultados para Shortest Path Length
Resumo:
Background and Purpose Randomized trials have demonstrated reduced morbidity and mortality with stroke unit care; however, the effect on length of stay, and hence the economic benefit, is less well-defined. In 2001, a multidisciplinary stroke unit was opened at our institution. We observed whether a stroke unit reduces length of stay and in-hospital case fatality when compared to admission to a general neurology/medical ward. Methods A retrospective study of 2 cohorts in the Foothills Medical Center in Calgary was conducted using administrative databases. We compared a cohort of stroke patients managed on general neurology/medical wards before 2001, with a similar cohort of stroke patients managed on a stroke unit after 2003. The length of stay was dichotomized after being centered to 7 days and the Charlson Index was dichotomized for analysis. Multivariable logistic regression was used to compare the length of stay and case fatality in 2 cohorts, adjusted for age, gender, and patient comorbid conditions defined by the Charlson Index. Results Average length of stay for patients on a stroke unit (n=2461) was 15 days vs 19 days for patients managed on general neurology/medical wards (n=1567). The proportion of patients with length of stay >7 days on general neurology/medical wards was 53.8% vs 44.4% on the stroke unit (difference 9.4%; P<0.0001). The adjusted odds of a length of stay >7 days was reduced by 30% (P<0.0001) on a stroke unit compared to general neurology/medical wards. Overall in-hospital case fatality was reduced by 4.5% with stroke unit care. Conclusions We observed a reduced length of stay and reduced in-hospital case-fatality in a stroke unit compared to general neurology/medical wards.
Resumo:
Concrete-filled steel tubular (CFST) columns have shown great potential as axial load carrying member and used widely in many mission critical infrastructures. However, attention is needed to strengthen these members where transverse impact force is expected to occur due to vehicle collisions. In this work, finite element (FE) model of carbon fibre reinforced polymer (CFRP) strengthened CFST columns are developed and the effect of CFRP bond length is investigated under transverse impact loading. Initially the numerical models have been validated by comparing impact test results from literature. The validated models are then used for detail parametric studies by varying the length of externally bonded CFRP composites. The parameters considered for this research are impact velocity, impact mass, CFRP modulus, adhesive type, and axial static loading. It has been observed that the effect of CFRP strengthening is consistent after an optimum effective bond length of CFRP wrapping. The effect of effective bond length has been studied for above parameters. The results show that, under combined axial static and transverse impact loads CFST columns can successfully prevent global buckling failure by strengthening only 34% of column length. Therefore, estimation of effective bond length is essential to utilise the CFRP composites cost effectively.
Resumo:
The Lagrangian particle tracking provides an effective method for simulating the deposition of nano- particles as well as micro-particles as it accounts for the particle inertia effect as well as the Brownian excitation. However, using the Lagrangian approach for simulating ultrafine particles has been limited due to computational cost and numerical difficulties. The aim of this paper is to study the deposition of nano-particles in cylindrical tubes under laminar condition using the Lagrangian particle tracking method. The commercial Fluent software is used to simulate the fluid flow in the pipes and to study the deposition and dispersion of nano-particles. Different particle diameters as well as different pipe lengths and flow rates are examined. The results show good agreement between the calculated deposition efficiency and different analytic correlations in the literature. Furthermore, for the nano-particles with higher diameters and when the effect of inertia has a higher importance, the calculated deposition efficiency by the Lagrangian method is less than the analytic correlations based on Eulerian method due to statistical error or the inertia effect.
Resumo:
This paper presents data on residents’ use of common stairways and lifts (vertical circulation spaces) in multi-storey apartment buildings (MSABs) in Brisbane, Australia. Vertical movement is a defining aspect of multi-storey living and the energy consumed by lifts contributes significantly to the energy budget of the typical MSAB. The purpose is to investigate whether a reappraisal of vertical circulation design, through the lens of residents’ requirements, might contribute to energy reductions in this building type. Data was gathered on a theoretical sample of MSAB ranging from five decades old to very recent schemes. 90 residents were surveyed about their day-to-day experiences of circulation and access systems. The results showed that residents mainly chose to use the stairs for convenience and exercise. Building management regimes that limited residents’ access to collective spaces were the main impediment to discretionary stair use. Only two buildings did not have fully enclosed stairwells and these had the highest stair usage, suggesting that stair design, and building governance are two areas that might be worthy of attention. The more that circulation design is focussed on limiting access, the less opportunities there are for personal choice, incidental social interaction and casual surveillance of collective spaces. The more that design of vertical circulation spaces in MSAB meets residents’ needs the less likely they are to be reliant on continuous energy supply for normal functioning.
Resumo:
Construction industry contributes significantly to environmental degradation, and governments in many countries which are endeavouring to address the situation. Malaysia is no exception. This paper examines the path towards green construction project delivery in Malaysia, focusing on current green policies and initiatives by governments. The historical waves in Malaysian approaches to tackling environmental issues are described, starting from the early 20th century, through the 1990s to the present, and the influence of these approaches on construction practices is analysed. Based on the findings of policy review, essential green construction practices aimed at mitigating the adverse effects of construction activities on the environment in Malaysia were identified. This paper paves the way for future studies in construction and sustainability in Malaysia, especially for the Southeast Asian region where sustainability practices are urgently needed.
Resumo:
PURPOSE To estimate refractive indices used by the Lenstar biometer to translate measured optical path lengths into geometrical path lengths within the eye. METHODS Axial lengths of model eyes were determined using the IOLMaster and Lenstar biometers; comparing those lengths gave an overall eye refractive index estimate for the Lenstar. Using the Lenstar Graphical User Interface, we noticed that boundaries between media could be manipulated and opposite changes in optical path lengths on either side of the boundary could be introduced. Those ratios were combined with the overall eye refractive index to estimate separate refractive indices. Furthermore, Haag-Streit provided us with a template to obtain 'air thicknesses' to compare with geometrical distances. RESULTS The axial length estimates obtained using the IOLMaster and the Lenstar agreed to within 0.01 mm. Estimates of group refractive indices used in the Lenstar were 1.340, 1.341, 1.415, and 1.354 for cornea, aqueous, lens, and overall eye, respectively. Those refractive indices did not match those of schematic eyes, but were close in the cases of aqueous and lens. Linear equations relating air thicknesses to geometrical thicknesses were consistent with our findings. CONCLUSION The Lenstar uses different refractive indices for different ocular media. Some of the refractive indices, such as that for the cornea, are not physiological; therefore, it is likely that the calibrations in the instrument correspond to instrument-specific corrections and are not the real optical path lengths.
Resumo:
Objective Chest pain is one of the most common complaints in patients presenting to an emergency department. Delays in management due to a lack of readily available objective tests to risk stratify patients with possible acute coronary syndromes can lead to an unnecessarily lengthy admission placing pressure on hospital beds or inappropriate discharge. The need for a co-ordinated system of clinical management based on enhanced communication between departments, timely and appropriate triage, clinical investigation, diagnosis, and treatment was identified. Methods An evidence-based Chest Pain Management Service and clinical pathway were developed and implemented, including the introduction of after-hours exercise stress testing. Results Between November 2005 and March 2013, 5662 patients were managed according to a Chest Pain Management pathway resulting in a reduction of 5181 admission nights by more timely identification of patients at low risk who could then be discharged. In addition, 1360 days were avoided in high-risk patients who received earlier diagnosis and treatment. Conclusions The creation of a Chest Pain Management pathway and the extended exercise stress testing service resulted in earlier discharge for low-risk patients; and timely treatment for patients with positive and equivocal exercise stress test results. This service demonstrated a significant saving in overnight admissions.
Resumo:
In continuum one-dimensional space, a coupled directed continuous time random walk model is proposed, where the random walker jumps toward one direction and the waiting time between jumps affects the subsequent jump. In the proposed model, the Laplace-Laplace transform of the probability density function P(x,t) of finding the walker at position at time is completely determined by the Laplace transform of the probability density function φ(t) of the waiting time. In terms of the probability density function of the waiting time in the Laplace domain, the limit distribution of the random process and the corresponding evolving equations are derived.
Resumo:
Endoplasmatic reticulum aminopeptidase 1 (ERAP1) is a multifunctional enzyme involved in trimming of peptides to an optimal length for presentation by major histocompatibility complex (MHC) class I molecules. Polymorphisms in ERAP1 have been associated with chronic inflammatory diseases, including ankylosing spondylitis (AS) and psoriasis, and subsequent in vitro enzyme studies suggest distinct catalytic properties of ERAP1 variants. To understand structure-activity relationships of this enzyme we determined crystal structures in open and closed states of human ERAP1, which provide the first snapshots along a catalytic path. ERAP1 is a zinc-metallopeptidase with typical H-E-X-X-H-(X)18-E zinc binding and G-A-M-E-N motifs characteristic for members of the gluzincin protease family. The structures reveal extensive domain movements, including an active site closure as well as three different open conformations, thus providing insights into the catalytic cycle. A K 528R mutant strongly associated with AS in GWAS studies shows significantly altered peptide processing characteristics, which are possibly related to impaired interdomain interactions.
Resumo:
This technical report describes a Light Detection and Ranging (LiDAR) augmented optimal path planning at low level flight methodology for remote sensing and sampling Unmanned Aerial Vehicles (UAV). The UAV is used to perform remote air sampling and data acquisition from a network of sensors on the ground. The data that contains information on the terrain is in the form of a 3D point clouds maps is processed by the algorithms to find an optimal path. The results show that the method and algorithm are able to use the LiDAR data to avoid obstacles when planning a path from a start to a target point. The report compares the performance of the method as the resolution of the LIDAR map is increased and when a Digital Elevation Model (DEM) is included. From a practical point of view, the optimal path plan is loaded and works seemingly with the UAV ground station and also shows the UAV ground station software augmented with more accurate LIDAR data.
Resumo:
Robot Path Planning (RPP) in dynamic environments is a search problem based on the examination of collision-free paths in the presence of dynamic and static obstacles. Many techniques have been developed to solve this problem. Trapping in a local minima and maintaining a Real-Time performance are known as the two most important challenges that these techniques face to solve such problem. This study presents a comprehensive survey of the various techniques that have been proposed in this domain. As part of this survey, we include a classification of the approaches and identify their methods.
Resumo:
This paper presents a global-optimisation frame-work for the design of a manipulator for harvesting capsicum(peppers) in the field. The framework uses a simulated capsicum scenario with automatically generated robot models based on DH parameters. Each automatically generated robot model is then placed in the simulated capsicum scenario and the ability of the robot model to get to several goals (capsicum with varying orientations and positions) is rated using two criteria:the length of a collision-free path and the dexterity of the end-effector. These criteria form the basis of the objective function used to perform a global optimisation. The paper shows a preliminary analysis and results that demonstrate the potential of this method to choose suitable robot models with varying degrees of freedom.
Resumo:
The extended recruitment season for short-lived species such as prawns biases the estimation of growth parameters from length-frequency data when conventional methods are used. We propose a simple method for overcoming this bias given a time series of length-frequency data. The difficulties arising from extended recruitment are eliminated by predicting the growth of the succeeding samples and the length increments of the recruits in previous samples. This method requires that some maximum size at recruitment can be specified. The advantages of this multiple length-frequency method are: it is simple to use; it requires only three parameters; no specific distributions need to be assumed; and the actual seasonal recruitment pattern does not have to be specified. We illustrate the new method with length-frequency data on the tiger prawn Penaeus esculentus from the north-western Gulf of Carpentaria, Australia.
Resumo:
We consider estimation of mortality rates and growth parameters from length-frequency data of a fish stock and derive the underlying length distribution of the population and the catch when there is individual variability in the von Bertalanffy growth parameter L-infinity. The model is flexible enough to accommodate 1) any recruitment pattern as a function of both time and length, 2) length-specific selectivity, and 3) varying fishing effort over time. The maximum likelihood method gives consistent estimates, provided the underlying distribution for individual variation in growth is correctly specified. Simulation results indicate that our method is reasonably robust to violations in the assumptions. The method is applied to tiger prawn data (Penaeus semisulcatus) to obtain estimates of natural and fishing mortality.
Resumo:
We consider estimation of mortality rates and growth parameters from length-frequency data of a fish stock when there is individual variability in the von Bertalanffy growth parameter L-infinity and investigate the possible bias in the estimates when the individual variability is ignored. Three methods are examined: (i) the regression method based on the Beverton and Holt's (1956, Rapp. P.V. Reun. Cons. Int. Explor. Mer, 140: 67-83) equation; (ii) the moment method of Powell (1979, Rapp. PV. Reun. Int. Explor. Mer, 175: 167-169); and (iii) a generalization of Powell's method that estimates the individual variability to be incorporated into the estimation. It is found that the biases in the estimates from the existing methods are, in general, substantial, even when individual variability in growth is small and recruitment is uniform, and the generalized method performs better in terms of bias but is subject to a larger variation. There is a need to develop robust and flexible methods to deal with individual variability in the analysis of length-frequency data.