204 resultados para Recombinant human BMP-7
Resumo:
Nucleic acid molecules are championing a new generation of reverse engineered biopharmaceuticals. In terms of potential application in gene medicine, plasmid DNA (pDNA) vectors have exceptional therapeutic and immunological profiles as they are free from safety concerns associated with viral vectors, display non-toxicity and are simpler to develop. This review addresses the potential applications of pDNA molecules in vaccine design/development and gene therapy via recombinant DNA technology as well as a staged delivery mechanism for the introduction of plasmid-borne gene to target cells via the nasal route.
Resumo:
Human half-lives of PentaBDE congeners have been estimated from the decline in serum concentrations measured over a 6-12 month period for a population of exchange students moving from North America to Australia. Australian serum PBDE concentrations are typically between 5 -10 times lower than in North America and we can therefore hypothesize that if the biological half-life is sufficiently short we would observe a decline in serum concentration with length of residence in Australia. Thirty students were recruited over a period of 3 years from whom serum were archived every 2 months during their stay in Australia. Australian residents (n=22) were also sampled longitudinally to estimate general population background levels. All serum samples were analyzed by gas chromatography high resolution mass spectrometry. Key findings confirmed that BDE-47 concentrations in the Australians (median 2.3;
Resumo:
This article considers the efforts of the Australian Law Reform Commission to clarify the meaning of section 18(2) of the Australian Patents Act 1990 (Cth): ’Human beings and the biological processes for their generation are not patentable inventions.' It provides a critique of the proposals of the Commission with respect to patent law and stem cell research. The Commission has recommended that IP Australia should develop examination guidelines to explain how the criteria for patentability apply to inventions involving stem cell technologies. It has advised the Australian Government that the practice code of the United Kingdom Patent Office (UKPO) would be a good model for such guidelines, with its distinction between totipotent and pluripotent stem cells. Arguably, though, there is a need to codify this proposal in a legislative directive, and not merely in examination guidelines. The Commission has been reluctant to take account of the ethical considerations with respect to patent law and stem cell research. There could be greater scope for such considerations, by the use of expert advisory boards, opposition proceedings and the requirement of informed consent. The Commission has put forward a number of general and specific recommendations to enhance access to patented stem cell technologies. It recommends the development of a research exemption, and the modernisation of compulsory licensing and crown use provisions. It also explores the establishment of a stem cell bank and the promulgation of guidelines by funding agencies. Such proposals to promote greater public access to stem cell research are to be welcomed.
Resumo:
The aim of this study was to develop a new method for quantifying intersegmental motion of the spine in an instrumented motion segment L4–L5 model using ultrasound image post-processing combined with an electromagnetic device. A prospective test–retest design was employed, combined with an evaluation of stability and within- and between-day intra-tester reliability during forward bending by 15 healthy male patients. The accuracy of the measurement system using the model was calculated to be ± 0.9° (standard deviation = 0.43) over a 40° range and ± 0.4 cm (standard deviation = 0.28) over 1.5 cm. The mean composite range of forward bending was 15.5 ± 2.04° during a single trial (standard error of the mean = 0.54, coefficient of variation = 4.18). Reliability (intra-class correlation coefficient = 2.1) was found to be excellent for both within-day measures (0.995–0.999) and between-day measures (0.996–0.999). Further work is necessary to explore the use of this approach in the evaluation of biomechanics, clinical assessments and interventions.
Resumo:
Identifying genetic variants influencing human brain structures may reveal new biological mechanisms underlying cognition and neuropsychiatric illness. The volume of the hippocampus is a biomarker of incipient Alzheimer's disease and is reduced in schizophrenia, major depression and mesial temporal lobe epilepsy. Whereas many brain imaging phenotypes are highly heritable, identifying and replicating genetic influences has been difficult, as small effects and the high costs of magnetic resonance imaging (MRI) have led to underpowered studies. Here we report genome-wide association meta-analyses and replication for mean bilateral hippocampal, total brain and intracranial volumes from a large multinational consortium. The intergenic variant rs7294919 was associated with hippocampal volume (12q24.22; N = 21,151; P = 6.70 × 10 -16) and the expression levels of the positional candidate gene TESC in brain tissue. Additionally, rs10784502, located within HMGA2, was associated with intracranial volume (12q14.3; N = 15,782; P = 1.12 × 10 -12). We also identified a suggestive association with total brain volume at rs10494373 within DDR2 (1q23.3; N = 6,500; P = 5.81 × 10 -7).
Resumo:
This paper analyzes the application of rights-based approaches to disaster displacement in the Asia-Pacific region in order to assess whether the current framework is sufficient to protect the rights of internally displaced persons. It identifies that disaster-induced displacement is increasingly prevalent in the region and that economic and social conditions in many countries mean that the impact of displacement is often prolonged and more severe. The paper identifies the relevant human rights principles which apply in the context of disaster-induced displacement and examines their implementation in a number of soft-law instruments. While it identifies shortcomings in impementation and enforcement, the paper concludes that a rights-based approach could be enhanced by greater engagement with existing human rights treaties and greater implementation of soft-law principles, and that no new instrument is required.
Resumo:
Serine proteinase inhibitors play important and diverse roles in biological processes such as coagulation, defense mechanisms, and immune responses. Here, we identified and characterized a Kunitz-type proteinase inhibitor, designated FcKuSPI, of the BPTI/Kunitz family of serine proteinase inhibitors from the hemocyte cDNA library of the shrimp Fenneropenaeus chinensis. The deduced amino acid sequence of FcKuSPI comprises 80 residues with a putative signal peptide of 15 amino acids. The predicted molecular weight of the mature peptide is 7.66 kDa and its predicted isoelectric point is 8.84. FcKuSPI includes a Kunitz domain containing six conserved cysteine residues that are predicted to form three disulfide bonds. FcKuSPI shares 44e53% homology with BPTI/Kunitz family members from other species. FcKuSPI mRNAwas expressed highly in the hemocytes and moderately in muscle in healthy shrimp. Recombinant FcKuSPI protein demonstrated anti-protease activity against trypsin and anticoagulant activity against citrated human plasma in a dose-dependent manner in in vitro assays.
Resumo:
Background/Aim. Mesenchymal stromal cells (MSCs) have been utilised in many clinical trials as an experimental treatment in numerous clinical settings. Bone marrow remains the traditional source tissue for MSCs but is relatively hard to access in large volumes. Alternatively, MSCs may be derived from other tissues including the placenta and adipose tissue. In an initial study no obvious differences in parameters such as cell surface phenotype, chemokine receptor display, mesodermal differentiation capacity or immunosuppressive ability, were detected when we compared human marrow derived- MSCs to human placenta-derived MSCs. The aim of this study was to establish and evaluate a protocol and related processes for preparation placenta-derived MSCs for early phase clinical trials. Methods. A full-term placenta was taken after delivery of the baby as a source of MSCs. Isolation, seeding, incubation, cryopreservation of human placentaderived MSCs and used production release criteria were in accordance with the complex regulatory requirements applicable to Code of Good Manufacturing Practice manufacturing of ex vivo expanded cells. Results. We established and evaluated instructions for MSCs preparation protocol and gave an overview of the three clinical areas application. In the first trial, MSCs were co-transplanted iv to patient receiving an allogeneic cord blood transplant as therapy for treatmentrefractory acute myeloid leukemia. In the second trial, MSCs were administered iv in the treatment of idiopathic pulmonary fibrosis and without serious adverse effects. In the third trial, MSCs were injected directly into the site of tendon damage using ultrasound guidance in the treatment of chronic refractory tendinopathy. Conclusion. Clinical trials using both allogeneic and autologous cells demonstrated MSCs to be safe. A described protocol for human placenta-derived MSCs is appropriate for use in a clinical setting, relatively inexpensive and can be relatively easily adjusted to a different set of regulatory requirements, as applicable to early phase clinical trials.
Resumo:
The beta-blockers carvedilol and metoprolol provide important therapeutic strategies for heart failure treatment. Therapy with metoprolol facilitates the control by phosphodiesterase PDE3, but not PDE4, of inotropic effects of catecholamines in human failing ventricle. However, it is not known whether carvedilol has the same effect. We investigated whether the PDE3-selective inhibitor cilostamide (0.3 mu M) or PDE4-selective inhibitor rolipram (1 mu M) modified the positive inotropic and lusitropic effects of catecholamines in ventricular myocardium of heart failure patients treated with carvedilol. Right ventricular trabeculae from explanted hearts of nine carvedilol-treated patients with terminal heart failure were paced to contract at 1 Hz. The effects of (-)-noradrenaline, mediated through beta(1)-adrenoceptors (beta(2)-adrenoceptors blocked with ICI118551), and (-)-adrenaline, mediated through beta(2)-adrenoceptors (beta(1)-adrenoceptors blocked with CGP20712A), were assessed in the absence and presence of the PDE inhibitors. The inotropic potency, estimated from -logEC(50)s, was unchanged for (-)-noradrenaline but decreased 16-fold for (-)-adrenaline in carvedilol-treated compared to non-beta-blocker-treated patients, consistent with the previously reported beta(2)-adrenoceptor-selectivity of carvedilol. Cilostamide caused 2- to 3-fold and 10- to 35-fold potentiations of the inotropic and lusitropic effects of (-)-noradrenaline and (-)-adrenaline, respectively, in trabeculae from carvedilol-treated patients. Rolipram did not affect the inotropic and lusitropic potencies of (-)-noradrenaline or (-)-adrenaline. Treatment of heart failure patients with carvedilol induces PDE3 to selectively control the positive inotropic and lusitropic effects mediated through ventricular beta(2)-adrenoceptors compared to beta(1)-adrenoceptors. The beta(2)-adrenoceptor-selectivity of carvedilol may provide protection against beta(2)-adrenoceptor-mediated ventricular overstimulation in PDE3 inhibitor-treated patients. PDE4 does not control beta(1)- and beta(2)-adrenoceptor-mediated inotropic and lusitropic effects in carvedilol-treated patients.
Resumo:
Placenta is a readily accessible translationally advantageous source of mesenchymal stem/stromal cells (MSCs) currently used in cryobanking and clinical trials. MSCs cultured from human chorion have been widely assumed to be fetal in origin, despite evidence that placental MSCs may be contaminated with maternal cells, resulting in entirely maternally derived MSC cultures. To document the frequency and determinants of maternal cell contamination in chorionic MSCs, we undertook a PRISMA-compliant systematic review of publications in the PubMed, Medline, and Embase databases (January 2000 to July 2013) on placental and/or chorionic MSCs from uncomplicated pregnancies. Of 147 studies, only 26 (18%) investigated fetal and/or maternal cell origin. After excluding studies that did not satisfy minimal MSC criteria, 7 of 15 informative studies documented MSC cultures as entirely fetal, a further 7 studies reported cultured human chorionic MSC populations to be either maternal (n=6) or mixed (n=1), whereas 1 study separately cultured pure fetal and pure maternal MSC from the same placenta. Maternal cell contamination was associated with term and chorionic membrane samples and greater passage number but was still present in 30% of studies of chorionic villous MSCs. Although most studies assume fetal origin for MSCs sourced from chorion, this systematic review documents a high incidence of maternal-origin MSC populations in placental MSC cultures. Given that fetal MSCs have more primitive properties than adult MSCs, our findings have implications for clinical trials in which knowledge of donor and tissue source is pivotal. We recommend sensitive methods to quantitate the source and purity of placental MSCs.
Resumo:
Background To investigate potential cardiovascular and other effects of long-term pharmacological interleukin 1 (IL-1) inhibition, we studied genetic variants that produce inhibition of IL-1, a master regulator of inflammation. Methods We created a genetic score combining the effects of alleles of two common variants (rs6743376 and rs1542176) that are located upstream of IL1RN, the gene encoding the IL-1 receptor antagonist (IL-1Ra; an endogenous inhibitor of both IL-1α and IL-1β); both alleles increase soluble IL-1Ra protein concentration. We compared effects on inflammation biomarkers of this genetic score with those of anakinra, the recombinant form of IL-1Ra, which has previously been studied in randomised trials of rheumatoid arthritis and other inflammatory disorders. In primary analyses, we investigated the score in relation to rheumatoid arthritis and four cardiometabolic diseases (type 2 diabetes, coronary heart disease, ischaemic stroke, and abdominal aortic aneurysm; 453 411 total participants). In exploratory analyses, we studied the relation of the score to many disease traits and to 24 other disorders of proposed relevance to IL-1 signalling (746 171 total participants). Findings For each IL1RN minor allele inherited, serum concentrations of IL-1Ra increased by 0·22 SD (95% CI 0·18–0·25; 12·5%; p=9·3 × 10−33), concentrations of interleukin 6 decreased by 0·02 SD (−0·04 to −0·01; −1·7%; p=3·5 × 10−3), and concentrations of C-reactive protein decreased by 0·03 SD (−0·04 to −0·02; −3·4%; p=7·7 × 10−14). We noted the effects of the genetic score on these inflammation biomarkers to be directionally concordant with those of anakinra. The allele count of the genetic score had roughly log-linear, dose-dependent associations with both IL-1Ra concentration and risk of coronary heart disease. For people who carried four IL-1Ra-raising alleles, the odds ratio for coronary heart disease was 1·15 (1·08–1·22; p=1·8 × 10−6) compared with people who carried no IL-1Ra-raising alleles; the per-allele odds ratio for coronary heart disease was 1·03 (1·02–1·04; p=3·9 × 10−10). Per-allele odds ratios were 0·97 (0·95–0·99; p=9·9 × 10−4) for rheumatoid arthritis, 0·99 (0·97–1·01; p=0·47) for type 2 diabetes, 1·00 (0·98–1·02; p=0·92) for ischaemic stroke, and 1·08 (1·04–1·12; p=1·8 × 10−5) for abdominal aortic aneurysm. In exploratory analyses, we observed per-allele increases in concentrations of proatherogenic lipids, including LDL-cholesterol, but no clear evidence of association for blood pressure, glycaemic traits, or any of the 24 other disorders studied. Modelling suggested that the observed increase in LDL-cholesterol could account for about a third of the association observed between the genetic score and increased coronary risk. Interpretation Human genetic data suggest that long-term dual IL-1α/β inhibition could increase cardiovascular risk and, conversely, reduce the risk of development of rheumatoid arthritis. The cardiovascular risk might, in part, be mediated through an increase in proatherogenic lipid concentrations. Funding UK Medical Research Council, British Heart Foundation, UK National Institute for Health Research, National Institute for Health Research Cambridge Biomedical Research Centre, European Research Council, and European Commission Framework Programme 7.
Resumo:
Advances in tissue-engineering have resulted in a versatile tool-box to specifically design a tailored microenvironment for hematopoietic stem cells (HSCs) in order to study diseases that develop within this setting. However, most current in vivo models fail to recapitulate the biological processes seen in humans. Here we describe a highly reproducible method to engineer humanized bone constructs that are able to recapitulate the morphological features and biological functions of the HSC niches. Ectopic implantation of biodegradable composite scaffolds cultured for 4 weeks with human mesenchymal progenitor cells and loaded with rhBMP-7 resulted in the development of a chimeric bone organ including a large number of human mesenchymal cells which were shown to be metabolically active and capable of establishing a humanized microenvironment supportive of the homing and maintenance of human HSCs. A syngeneic mouse-to-mouse transplantation assay was used to prove the functionality of the tissue-engineered ossicles. We predict that the ability to tissue engineer a morphologically intact and functional large-volume bone organ with a humanized bone marrow compartment will help to further elucidate physiological or pathological interactions between human HSCs and their native niches.
Resumo:
Context: Osteoporosis is a common, highly heritable condition that causes substantial morbidity and mortality, the etiopathogenesis of which is poorly understood. Genetic studies are making increasingly rapid progress in identifying the genes involved. Evidence Acquisition and Synthesis: In this review, we will summarize the current understanding of the genetics of osteoporosis based on publications from PubMed from the year 1987 onward. Conclusions: Most genes involved in osteoporosis identified to date encode components of known pathways involved in bone synthesis or resorption, but as the field progresses, new pathways are being identified. Only a small proportion of the total genetic variation involved in osteoporosis has been identified, and new approaches will be required to identify most of the remaining genes.
Resumo:
Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal dominant disorder of skeletal malformations and progressive extraskeletal ossification. We mapped FOP to chromosome 2q23-24 by linkage analysis and identified an identical heterozygous mutation (617G→A; R206H) in the glycine-serine (GS) activation domain of ACVR1, a BMP type I receptor, in all affected individuals examined. Protein modeling predicts destabilization of the GS domain, consistent with constitutive activation of ACVR1 as the underlying cause of the ectopic chondrogenesis, osteogenesis and joint fusions seen in FOP.
Resumo:
Introduction: Ultrasmall superparamagnetic iron oxide (USPIO)-enhanced MRI has been shown to be a useful modality to image activated macrophages in vivo, which are principally responsible for plaque inflammation. This study determined the optimum imaging time-window to detect maximal signal change post-USPIO infusion using T1-weighted (T1w), T2*- weighted (T2*w) and quantitative T2*(qT 2*) imaging. Methods: Six patients with an asymptomatic carotid stenosis underwent high resolution T1w, T2*w and qT2*MR imaging of their carotid arteries at 1.5 T. Imaging was performed before and at 24, 36, 48, 72 and 96 h after USPIO (Sinerem™, Guerbet, France) infusion. Each slice showing atherosclerotic plaque was manually segmented into quadrants and signal changes in each quadrant were fitted to an exponential power function to model the optimum time for post-infusion imaging. Results: The power function determining the mean time to convergence for all patients was 46, 41 and 39 h for the T1w, T 2*w and qT2*sequences, respectively. When modelling each patient individually, 90% of the maximum signal intensity change was observed at 36 h for three, four and six patients on T1w, T 2*w and qT2*, respectively. The rates of signal change decrease after this period but signal change was still evident up to 96 h. Conclusion: This study showed that a suitable imaging window for T 1w, T2*w and qT2*signal changes post-USPIO infusion was between 36 and 48 h. Logistically, this would be convenient in bringing patients back for one post-contrast MRI, but validation is required in a larger cohort of patients.