292 resultados para Quincy Mining Company.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis takes a new data mining approach for analyzing road/crash data by developing models for the whole road network and generating a crash risk profile. Roads with an elevated crash risk due to road surface friction deficit are identified. The regression tree model, predicting road segment crash rate, is applied in a novel deployment coined regression tree extrapolation that produces a skid resistance/crash rate curve. Using extrapolation allows the method to be applied across the network and cope with the high proportion of missing road surface friction values. This risk profiling method can be applied in other domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At NTCIR-10 we participated in the cross-lingual link discovery (CrossLink-2) task. In this paper we describe our systems for discovering cross-lingual links between the Chinese, Japanese, and Korean (CJK) Wikipedia and the English Wikipedia. The evaluation results show that our implementation of the cross-lingual linking method achieved promising results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Road surface skid resistance has been shown to have a strong relationship to road crash risk, however, applying the current method of using investigatory levels to identify crash prone roads is problematic as they may fail in identifying risky roads outside of the norm. The proposed method analyses a complex and formerly impenetrable volume of data from roads and crashes using data mining. This method rapidly identifies roads with elevated crash-rate, potentially due to skid resistance deficit, for investigation. A hypothetical skid resistance/crash risk curve is developed for each road segment, driven by the model deployed in a novel regression tree extrapolation method. The method potentially solves the problem of missing skid resistance values which occurs during network-wide crash analysis, and allows risk assessment of the major proportion of roads without skid resistance values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is a study for automatic discovery of text features for describing user information needs. It presents an innovative data-mining approach that discovers useful knowledge from both relevance and non-relevance feedback information. The proposed approach can largely reduce noises in discovered patterns and significantly improve the performance of text mining systems. This study provides a promising method for the study of Data Mining and Web Intelligence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smart Card data from Automated Fare Collection system has been considered as a promising source of information for transit planning. However, literature has been limited to mining travel patterns from transit users and suggesting the potential of using this information. This paper proposes a method for mining spatial regular origins-destinations and temporal habitual travelling time from transit users. These travel regularity are discussed as being useful for transit planning. After reconstructing the travel itineraries, three levels of Density-Based Spatial Clustering of Application with Noise (DBSCAN) have been utilised to retrieve travel regularity of each of each frequent transit users. Analyses of passenger classifications and personal travel time variability estimation are performed as the examples of using travel regularity in transit planning. The methodology introduced in this paper is of interest for transit authorities in planning and managements

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last decade, the majority of existing search techniques is either keyword- based or category-based, resulting in unsatisfactory effectiveness. Meanwhile, studies have illustrated that more than 80% of users preferred personalized search results. As a result, many studies paid a great deal of efforts (referred to as col- laborative filtering) investigating on personalized notions for enhancing retrieval performance. One of the fundamental yet most challenging steps is to capture precise user information needs. Most Web users are inexperienced or lack the capability to express their needs properly, whereas the existent retrieval systems are highly sensitive to vocabulary. Researchers have increasingly proposed the utilization of ontology-based tech- niques to improve current mining approaches. The related techniques are not only able to refine search intentions among specific generic domains, but also to access new knowledge by tracking semantic relations. In recent years, some researchers have attempted to build ontological user profiles according to discovered user background knowledge. The knowledge is considered to be both global and lo- cal analyses, which aim to produce tailored ontologies by a group of concepts. However, a key problem here that has not been addressed is: how to accurately match diverse local information to universal global knowledge. This research conducts a theoretical study on the use of personalized ontolo- gies to enhance text mining performance. The objective is to understand user information needs by a \bag-of-concepts" rather than \words". The concepts are gathered from a general world knowledge base named the Library of Congress Subject Headings. To return desirable search results, a novel ontology-based mining approach is introduced to discover accurate search intentions and learn personalized ontologies as user profiles. The approach can not only pinpoint users' individual intentions in a rough hierarchical structure, but can also in- terpret their needs by a set of acknowledged concepts. Along with global and local analyses, another solid concept matching approach is carried out to address about the mismatch between local information and world knowledge. Relevance features produced by the Relevance Feature Discovery model, are determined as representatives of local information. These features have been proven as the best alternative for user queries to avoid ambiguity and consistently outperform the features extracted by other filtering models. The two attempt-to-proposed ap- proaches are both evaluated by a scientific evaluation with the standard Reuters Corpus Volume 1 testing set. A comprehensive comparison is made with a num- ber of the state-of-the art baseline models, including TF-IDF, Rocchio, Okapi BM25, the deploying Pattern Taxonomy Model, and an ontology-based model. The gathered results indicate that the top precision can be improved remarkably with the proposed ontology mining approach, where the matching approach is successful and achieves significant improvements in most information filtering measurements. This research contributes to the fields of ontological filtering, user profiling, and knowledge representation. The related outputs are critical when systems are expected to return proper mining results and provide personalized services. The scientific findings have the potential to facilitate the design of advanced preference mining models, where impact on people's daily lives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A people-to-people matching system (or a match-making system) refers to a system in which users join with the objective of meeting other users with the common need. Some real-world examples of these systems are employer-employee (in job search networks), mentor-student (in university social networks), consume-to-consumer (in marketplaces) and male-female (in an online dating network). The network underlying in these systems consists of two groups of users, and the relationships between users need to be captured for developing an efficient match-making system. Most of the existing studies utilize information either about each of the users in isolation or their interaction separately, and develop recommender systems using the one form of information only. It is imperative to understand the linkages among the users in the network and use them in developing a match-making system. This study utilizes several social network analysis methods such as graph theory, small world phenomenon, centrality analysis, density analysis to gain insight into the entities and their relationships present in this network. This paper also proposes a new type of graph called “attributed bipartite graph”. By using these analyses and the proposed type of graph, an efficient hybrid recommender system is developed which generates recommendation for new users as well as shows improvement in accuracy over the baseline methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commuting in the mining industry -Background -The problem -Journey management -The structure of the legislative framework Legislation and Regulation -Workplace safety in Queensland mining -Risk management -Mining legislation and journey management -Commuting and employee responsibilities -Queensland Workers’ Compensation Scheme Industry standards -Industry standards and journey management Regulated and organisational policy documents -Policy documents and journey management Observations & Conclusions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much publicity has been given to the problem of high levels of environmental contaminants, most notably high blood lead concentration levels among children in the city of Mount Isa because of mining and smelting activities. The health impacts from mining-related pollutants are now well documented. This includes published research being discussed in an editorial of the Medical Journal of Australia (see Munksgaard et al. 2010). On the other hand, negative impacts on property prices, although mentioned, have not been examined to date. This study rectifies this research gap. This study uses a hedonic property price approach to examine the impact of mining- and smelting-related pollution on nearby property prices. The hypothesis is that those properties closer to the lead and copper smelters have lower property (house) prices than those farther away. The results of the study show that the marginal willingness to pay to be farther from the pollution source is AUS $13 947 per kilometre within the 4 km radius selected. The study has several policy implications, which are discussed briefly. We used ordinary least squares, geographically weighted regression, spatial error and spatial autoregressive or spatial lag models for this analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes the development of a robust and novel prototype to address the data quality problems that relate to the dimension of outlier data. It thoroughly investigates the associated problems with regards to detecting, assessing and determining the severity of the problem of outlier data; and proposes granule-mining based alternative techniques to significantly improve the effectiveness of mining and assessing outlier data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of applications for dynamic ridesharing or carpooling is often formulated as a matching problem of connecting people with an aligned set of transport needs within a reasonable interval of time and space. This problem formulation relegates social connections to being secondary factors. Technology assisted ridesharing applications that put the matching problem first have revealed that they suffer from being unable to address the factor of social comfort, even after adding friend features or piggybacking on social networking sites. This research aims to understand the fabric of social interactions through which ridesharing happens. We take an online observation approach in order to understand the fabric of social interactions for ridesharing that is happening in highly subscribed online groups of local residents. This understanding will help researchers to identify design challenges and opportunities to support ridesharing in local communities. This paper contributes a fundamental understanding of how social interactions and social comfort precede rideshare requests in local communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Business process analysis and process mining, particularly within the health care domain, remain under-utilised. Applied research that employs such techniques to routinely collected, health care data enables stakeholders to empirically investigate care as it is delivered by different health providers. However, cross-organisational mining and the comparative analysis of processes present a set of unique challenges in terms of ensuring population and activity comparability, visualising the mined models and interpreting the results. Without addressing these issues, health providers will find it difficult to use process mining insights, and the potential benefits of evidence-based process improvement within health will remain unrealised. In this paper, we present a brief introduction on the nature of health care processes; a review of the process mining in health literature; and a case study conducted to explore and learn how health care data, and cross-organisational comparisons with process mining techniques may be approached. The case study applies process mining techniques to administrative and clinical data for patients who present with chest pain symptoms at one of four public hospitals in South Australia. We demonstrate an approach that provides detailed insights into clinical (quality of patient health) and fiscal (hospital budget) pressures in health care practice. We conclude by discussing the key lessons learned from our experience in conducting business process analysis and process mining based on the data from four different hospitals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is a practice-led project consisting of a Young Adult novel, Open Cut, and an exegesis, 'I Wouldn't Say That': Finding a Young Adult, Female Voice in a Queensland Mining Town. The thesis investigates the use of first person narration in order to create an immediate engaging, realist Young Adult Fiction. The research design is bound by a feminist interpretative paradigm. The methodology employed is practice-led, auto-ethnography, and participant observation. Particular characteristics of first person narration used in Australian Young Adult Fiction are identified in an analysis of Dust, by Christine Bongers, and Jasper Jones, by Craig Silvey. The exegesis also contains a reflection on the researcher's creative work, and the process used to draft, edit, plot and construct the novel. The research contributes to knowledge in the field of Young Adult Literature because it offers a graphic portrayal of an Australian mining town that has not been heard before.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Process mining has developed into a popular research discipline and nowadays its associated techniques are widely applied in practice. What is currently ill-understood is how the success of a process mining project can be measured and what the antecedent factors of process mining success are. We consider an improved, grounded understanding of these aspects of value to better manage the effectiveness and efficiency of process mining projects in practice. As such, we advance a model, tailored to the characteristics of process mining projects, which identifies and relates success factors and measures. We draw inspiration from the literature from related fields for the construction of a theoretical, a priori model. That model has been validated and re-specified on the basis of a multiple case study, which involved four industrial process mining projects. The unique contribution of this paper is that it presents the first set of success factors and measures on the basis of an analysis of real process mining projects. The presented model can also serve as a basis for further extension and refinement using insights from additional analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper uses innovative content analysis techniques to map how the death of Oscar Pistorius' girlfriend, Reeva Steenkamp, was framed on Twitter conversations. Around 1.5 million posts from a two-week timeframe are analyzed with a combination of syntactic and semantic methods. This analysis is grounded in the frame analysis perspective and is different than sentiment analysis. Instead of looking for explicit evaluations, such as “he is guilty” or “he is innocent”, we showcase through the results how opinions can be identified by complex articulations of more implicit symbolic devices such as examples and metaphors repeatedly mentioned. Different frames are adopted by users as more information about the case is revealed: from a more episodic one, highly used in the very beginning, to more systemic approaches, highlighting the association of the event with urban violence, gun control issues, and violence against women. A detailed timeline of the discussions is provided.