195 resultados para Pyruvate cycling


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study compared fat oxidation rate from a graded exercise test (GXT) with a moderate-intensity interval training session (MIIT) in obese men. Twelve sedentary obese males (age 29 ± 4.1 years; BMI 29.1 ± 2.4 kg·m-2; fat mass 31.7 ± 4.4 %body mass) completed two exercise sessions: GXT to determine maximal fat oxidation (MFO) and maximal aerobic power (VO2max), and an interval cycling session during which respiratory gases were measured. The 30-min MIIT involved 5-min repetitions of workloads 20% below and 20% above the MFO intensity. VO2max was 31.8 ± 5.5 ml·kg-1·min-1 and all participants achieved ≥ 3 of the designated VO2max test criteria. The MFO identified during the GXT was not significantly different compared with the average fat oxidation rate in the MIIT session. During the MIIT session, fat oxidation rate increased with time; the highest rate (0.18 ± 0.11 g·min- 1) in minute 25 was significantly higher than the rate at minute 5 and 15 (p ≤ 0.01 and 0.05 respectively). In this cohort with low aerobic fitness, fat oxidation during the MIIT session was comparable with the MFO determined during a GXT. Future research may consider if the varying workload in moderate-intensity interval training helps adherence to exercise without compromising fat oxidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cities are the most dramatic manifestations of human activities on the surface of the earth. These human-dominated organisms—i.e., cities—degrade natural habitats, simplify species composition, disrupt hydrological systems, and modify energy flow and nutrient cycling. Today, these consequential impacts of human activities, originated from population increase, rapid urbanization, high private motor vehicle dependency, deregulated industrialization and mass livestock production, are increasing exponentially and causing great deal of environmental, social, and economic challenges both at global and local scales. In such a situation, establishment of sustainable cities, through sustainable urban development practices, is seen as a potential panacea to combat these challenges responsibly, effectively, and efficiently. This paper offers a critical review of the key literature on the issues relating to planning, development and management of sustainable cities, introduces the contributions from the Special Issue, and speculates on the prospective research directions to place necessary mechanisms to secure a sustainable urban future for all.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents some results from preliminary analyses of the data of an international online survey of bicycle riders, who reported riding at least once a month. On 4 July 2015, data from 7528 participants from 17 countries was available in the survey, and were subsequently cleaned and checked for consistency. The median distance ridden ranged from 30 km/week in Israel to 150 km/week in Greece (overall median 54 km/week). City/hybrid bicycles were the most common type of bicycle ridden (44%), followed by mountain (20%) and road bikes (15%). Almost half (47%) of the respondents rode “nearly daily”. About a quarter rode daily to work or study (27%). Overall, 40% of respondents reported wearing a helmet ‘always’, varying from 2% in the Netherlands to 80% in Norway, while 25% reported ‘never’ wearing a helmet. Thus, individuals appeared to consistently either use or not use helmets. Helmet wearing rates were generally higher when riding for health/fitness than other purposes and appeared to be little affected by the type of riding location, but some divergences in these patterns were found among countries. Almost 29% of respondents reported being involved in at least one bicycle crash in the last year (ranging from 12% in Israel to 53% in Turkey). Among the most severe crashes for each respondent, about half of the crashes involved falling off a bicycle. Just under 10% of the most severe crashes for each respondent were reported to police. Among the bicycle-motor vehicle crashes, only a third were reported to police. Further analyses will address questions regarding the influence of factors such as demographic characteristics, type of bicycle ridden, and attitudes on both bi-cycle use and helmet wearing rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lithium-ion exchange rate capability of various commercial graphite materials are evaluated using galvanostatic charge/discharge cycling in a half-cell configuration over a wide range of C-rates (0.1 similar to 60C). The results confirm that graphite is capable of de-intercalating stored charge at high rates, but has a poor intercalating rate capability. Decreasing the graphite coating thickness leads to a limited rate performance improvement of the electrode. Reducing the graphite particle size shows enhanced C-rate capability but with increased irreversible capacity loss (ICL). It is demonstrated that the rate of intercalation of lithium-ions into the graphite is significantly limited compared with the corresponding rate of de-intercalation at high C-rates. For the successful utilisation of commercially available conventional graphite as a negative electrode in a lithium-ion capacitor (LIC), its intercalation rate capability needs to be improved or oversized to accommodate high charge rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silicon has demonstrated great potential as anode materials for next-generation high-energy density rechargeable lithium ion batteries. However, its poor mechanical integrity needs to be improved to achieve the required cycling stability. Nano-structured silicon has been used to prevent the mechanical failure caused by large volume expansion of silicon. Unfortunately, pristine silicon nanostructures still suffer from quick capacity decay due to several reasons, such as formation of solid electrolyte interphase, poor electrical contact and agglomeration of nanostructures. Recently, increasing attention has been paid to exploring the possibilities of hybridization with carbonaceous nanostructures to solve these problems. In this review, the recent advances in the design of carbon-silicon nanohybrid anodes and existing challenges for the development of high-performance lithium battery anodes are briefly discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

- Introduction Heat-based training (HT) is becoming increasingly popular as a means of inducing acclimation before athletic competition in hot conditions and/or to augment the training impulse beyond that achieved in thermo-neutral conditions. Importantly, current understanding of the effects of HT on regenerative processes such as sleep and the interactions with common recovery interventions remain unknown. This study aimed to examine sleep characteristics during five consecutive days of training in the heat with the inclusion of cold-water immersion (CWI) compared to baseline sleep patterns. - Methods Thirty recreationally-trained males completed HT in 32 ± 1 °C and 60% rh for five consecutive days. Conditions included: 1) 90 min cycling at 40 % power at VO2max (Pmax) (90CONT; n = 10); 90 min cycling at 40 % Pmax with a 20 min CWI (14 ± 1 °C; 90CWI; n = 10); and 30 min cycling alternating between 40 and 70 % Pmax every 3 min, with no recovery intervention (30HIT; n = 10). Sleep quality and quantity was assessed during HT and four nights of 'baseline' sleep (BASE). Actigraphy provided measures of time in and out of bed, sleep latency, efficiency, total time in bed and total time asleep, wake after sleep onset, number of awakenings, and wakening duration. Subjective ratings of sleep were also recorded using a 1-5 Likert scale. Repeated measures analysis of variance (ANOVA) was completed to determine effect of time and condition on sleep quality and quantity. Cohen's d effect sizes were also applied to determine magnitude and trends in the data. - Results Sleep latency, efficiency, total time in bed and number of awakenings were not significantly different between BASE and HT (P > 0.05). However, total time asleep was significantly reduced (P = 0.01; d = 1.46) and the duration periods of wakefulness after sleep onset was significantly greater during HT compared with BASE (P = 0.001; d = 1.14). Comparison between training groups showed latency was significantly higher for the 30HIT group compared to 90CONT (P = 0.02; d = 1.33). Nevertheless, there were no differences between training groups for sleep efficiency, total time in bed or asleep, wake after sleep onset, number of awakenings or awake duration (P > 0.05). Further, cold-water immersion recovery had no significant effect on sleep characteristics (P > 0.05). - Discussion Sleep plays an important role in athletic recovery and has previously been demonstrated to be influenced by both exercise training and thermal strain. Present data highlight the effect of HT on reduced sleep quality, specifically reducing total time asleep due to longer duration awake during awakenings after sleep onset. Importantly, although cold water recovery accelerates the removal of thermal load, this intervention did not blunt the negative effects of HT on sleep characteristics. - Conclusion Training in hot conditions may reduce both sleep quantity and quality and should be taken into consideration when administering this training intervention in the field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High Intensity Exercise (HIE) stimulates greater physiological remodeling when compared to workload matched low-moderate intensity exercise. This study utilized an untargeted metabolomics approach to examine the metabolic perturbations that occur following two workload matched supramaximal low volume HIE trials. In a randomized order, 7 untrained males completed two exercise protocols separated by one week; 1) HIE150%: 30 x 20s cycling at 150% VO2peak, 40s passive rest; 2) HIE300%: 30 x 10s cycling at 300% VO2peak, 50 s passive rest. Total exercise duration was 30 minutes for both trials. Blood samples were taken at rest, during and immediately following exercise and at 60 minutes post exercise. Gas chromatography-mass spectrometry (GC-MS) analysis of plasma identified 43 known metabolites of which 3 demonstrated significant fold changes (HIE300% compared to the HIE150% value) during exercise, 14 post exercise and 23 at the end of the recovery period. Significant changes in plasma metabolites relating to lipid metabolism [fatty acids: dodecanoate (p=0.042), hexadecanoate (p=0.001), octadecanoate (p=0.001)], total cholesterol (p=0.001), and glycolysis [lactate (p=0.018)] were observed following exercise and during the recovery period. The HIE300% protocol elicited greater metabolic changes relating to lipid metabolism and glycolysis when compared to HIE150% protocol. These changes were more pronounced throughout the recovery period rather than during the exercise bout itself. Data from the current study demonstrate the use of metabolomics to monitor intensity-dependent changes in multiple metabolic pathways following exercise. The small sample size indicates a need for further studies in a larger sample cohort to validate these findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gas fermentation using acetogenic bacteria offers a promising route for the sustainable production of low carbon fuels and commodity chemicals from abundant, inexpensive C1 feedstocks including industrial waste gases, syngas, reformed methane or methanol. Clostridium autoethanogenum is a model gas fermenting acetogen that produces fuel ethanol and 2,3-butanediol, a precursor for nylon and rubber. Acetogens have already been used in large scale industrial fermentations, they are ubiquitous and known to play a prominent role in the global carbon cycle. Still, they are considered to live on the thermodynamic edge of life and potential energy constraints when growing on C1 gases pose a major challange for the commercial production of fuels and chemicals. We have developed a systematic platform to investigate acetogenic energy metabolism, exemplified here by experiments contrasting heterotrophic and autotrophic metabolism. The platform is built from complete omics technologies, augmented with genetic tools and complemented by a manually curated genome-scale mathematical model. Together the tools enable the design and development of new, energy efficient pathways and strains for the production of chemicals and advanced fuels via C1 gas fermentation. As a proof-of-platform, we investigated heterotrophic growth on fructose versus autotrophic growth on gas that demonstrate the role of the Rnf complex and Nfn complex in maintaining growth using the Wood–Ljungdahl pathway. Pyruvate carboxykinase was found to control the rate-limiting step of gluconeogenesis and a new specialized glyceraldehyde-3-phosphate dehydrogenase was identified that potentially enhances anabolic capacity by reducing the amount of ATP consumed by gluconeogenesis. The results have been confirmed by the construction of mutant strains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Muscle hypertrophy occurs following increased protein synthesis, which requires activation of the ribosomal complex. Additionally, increased translational capacity via elevated ribosomal RNA (rRNA) synthesis has also been implicated in resistance training-induced skeletal muscle hypertrophy. The time course of ribosome biogenesis following resistance exercise (RE) and the impact exerted by differing recovery strategies remains unknown. In the present study, the activation of transcriptional regulators, the expression levels of pre-rRNA, and mature rRNA components were measured through 48 h after a single-bout RE. In addition, the effects of either low-intensity cycling (active recovery, ACT) or a cold-water immersion (CWI) recovery strategy were compared. Nine male subjects performed two bouts of high-load RE randomized to be followed by 10 min of either ACT or CWI. Muscle biopsies were collected before RE and at 2, 24, and 48 h after RE. RE increased the phosphorylation of the p38-MNK1-eIF4E axis, an effect only evident with ACT recovery. Downstream, cyclin D1 protein, total eIF4E, upstream binding factor 1 (UBF1), and c-Myc proteins were all increased only after RE with ACT. This corresponded with elevated abundance of the pre-rRNAs (45S, ITS-28S, ITS-5.8S, and ETS-18S) from 24 h after RE with ACT. In conclusion, coordinated upstream signaling and activation of transcriptional factors stimulated pre-rRNA expression after RE. CWI, as a recovery strategy, markedly blunted these events, suggesting that suppressed ribosome biogenesis may be one factor contributing to the impaired hypertrophic response observed when CWI is used regularly after exercise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hierarchical SnO2 hollow spheres self-assembled from nanosheets were prepared with and without carbon coating. The combination of nanosized architecture, hollow structure, and a conductive carbon layer endows the SnO2-based anode with improved specific capacity and cycling stability, making it more promising for use in lithium ion batteries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three-dimensional (3D) Fe2(MoO4)3 microspheres with ultrathin nanosheet constituents are first synthesized as anode materials for the lithium-ion battery. It is interesting that the single-crystalline nanosheets allow rapid electron/ion transport on the inside, and the high porosity ensures fast diffusion of liquid electrolyte in energy storage applications. The electrochemical properties of Fe2(MoO4)3 as anode demonstrates that 3D Fe2(MoO4)3 microspheres deliver an initial capacity of 1855 mAh/g at a current density of 100 mA/g. Particularly, when the current density is increased to 800 mA/g, the reversible capacity of Fe2(MoO4)3 anode still arrived at 456 mAh/g over 50 cycles. The large and reversible capacities and stable charge–discharge cycling performance indicate that Fe2(MoO4)3 is a promising anode material for lithium battery applications. Graphical abstract The electrochemical properties of Fe2(MoO4)3 as anode demonstrates that 3D Fe2(MoO4)3 microspheres delivered an initial capacity of 1855 mAh/g at a current density of 100 mA/g. When the current density was increased to 800 mA/g, the Fe2(MoO4)3 still behaved high reversible capacity and good cycle performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sodium-ion batteries (SIBs) are considered as complementary alternatives to lithium-ion batteries for grid energy storage due to the abundance of sodium. However, low capacity, poor rate capability, and cycling stability of existing anodes significantly hinder the practical applications of SIBs. Herein, ultrathin two-dimensional SnS2 nanosheets (3-4 nm in thickness) are synthesized via a facile refluxing process toward enhanced sodium storage. The SnS2 nanosheets exhibit a high apparent diffusion coefficient of Na+ and fast sodiation/desodiation reaction kinetics. In half-cells, the nanosheets deliver a high reversible capacity of 733 mAh g-1 at 0.1 A g-1, which still remains up to 435 mAh g-1 at 2 A g-1. The cell has a high capacity retention of 647 mA h g-1 during the 50th cycle at 0.1 A g-1, which is by far the best for SnS2, suggesting that nanosheet morphology is beneficial to improve cycling stability in addition to rate capability. The SnS2 nanosheets also show encouraging performance in a full cell with a Na3V2(PO4)3 cathode. In addition, the sodium storage mechanism is investigated by ex situ XRD coupled with high-resolution TEM. The high specific capacity, good rate capability, and cycling durability suggest that SnS2 nanosheets have great potential working as anodes for high-performance SIBs. © 2015 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examined the effect of exercise intensity and duration during 5-day heat acclimation (HA) on cycling performance and neuromuscular responses. 20 recreationally trained males completed a ‘baseline’ trial followed by 5 consecutive days HA, and a ‘post-acclimation’ trial. Baseline and post-acclimation trials consisted of maximal voluntary contractions (MVC), a single and repeated countermovement jump protocol, 20 km cycling time trial(TT) and 5x6 s maximal sprints (SPR). Cycling trials were undertaken in 33.0 ± 0.8 °C and 60 ± 3% relative humidity.Core(Tcore), and skin temperatures (Tskin), heart rate (HR), rating of perceived exertion (RPE) and thermal sensation were recorded throughout cycling trials. Participants were assigned to either 30 min high-intensity (30HI) or 90 min low-intensity (90LI) cohorts for HA, conducted in environmental conditions of 32.0 ± 1.6 °C. Percentage change time to complete the 20 km TT for the 90LI cohort was significantly improved post-acclimation(-5.9 ± 7.0%; P=0.04) compared to the 30HI cohort (-0.18 ± 3.9%; P<0.05). The 30HI cohort showed greatest improvements in power output (PO) during post-acclimation SPR1 and 2 compared to 90LI (546 ± 128 W and 517 ± 87 W,respectively; P<0.02). No differences were evident for MVC within 30HI cohort, however, a reduced performance indicated by % change within the 90LI (P=0.04). Compared to baseline, mean Tcore was reduced post-acclimation within the 30HI cohort (P=0.05) while mean Tcore and HR were significantly reduced within the 90LI cohort (P=0.01 and 0.04, respectively). Greater physiological adaptations and performance improvements were noted within the 90LI cohort compared to the 30HI. However, 30HI did provide some benefit to anaerobic performance including sprint PO and MVC. These findings suggest specifying training duration and intensity during heat acclimation may be useful for specific post-acclimation performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pre-school children grow and develop rapidly with age and their changing capabilities are reflected in the ways in which they are injured. Using coded and textual descriptions of transport-related injuries in children under five years of age from the Queensland Injury Surveillance Unit (QISU) this paper profiles the modes of such injuries by single year of age. The QISU collects information on all injury presentations to emergency department in hospitals throughout Queensland using both coded information and textual description. Almost all transport-related injuries in children under one year are due to motor vehicle crashes but these become proportionately less common thereafter, while injuries while cycling become proportionately more common with age. Slow-speed vehicle runovers peak at age one year but occur at all ages in the range. Bicycle-related fatalities are rare in this age group. If bicycle-related injuries are excluded, the profiles of fatal and non-fatal injuries are broadly similar. Comparison with a Queensland hospital series suggests that these results are broadly representative.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lung cancer is the second most common type of cancer in the world and is the most common cause of cancer-related death in both men and women. Research into causes, prevention and treatment of lung cancer is ongoing and much progress has been made recently in these areas, however survival rates have not significantly improved. Therefore, it is essential to develop biomarkers for early diagnosis of lung cancer, prediction of metastasis and evaluation of treatment efficiency, as well as using these molecules to provide some understanding about tumour biology and translate highly promising findings in basic science research to clinical application. In this investigation, two-dimensional difference gel electrophoresis and mass spectrometry were initially used to analyse conditioned media from a panel of lung cancer and normal bronchial epithelial cell lines. Significant proteins were identified with heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1), pyruvate kinase M2 isoform (PKM2), Hsc-70 interacting protein and lactate dehydrogenase A (LDHA) selected for analysis in serum from healthy individuals and lung cancer patients. hnRNPA2B1, PKM2 and LDHA were found to be statistically significant in all comparisons. Tissue analysis and knockdown of hnRNPA2B1 using siRNA subsequently demonstrated both the overexpression and potential role for this molecule in lung tumorigenesis. The data presented highlights a number of in vitro derived candidate biomarkers subsequently verified in patient samples and also provides some insight into their roles in the complex intracellular mechanisms associated with tumour progression.