186 resultados para Posterior Paralysis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE To quantify the influence of short-term wear of miniscleral contact lenses on the morphology of the corneo-scleral limbus, the conjunctiva, episclera and sclera. METHODS OCT images of the anterior eye were captured before, immediately following 3h of wear and then 3h after removal of a miniscleral contact lens for 10 young (27±5 years) healthy participants (neophyte rigid lens wearers). The region of analysis encompassed 1mm anterior, to 3.5mm posterior to the scleral spur. Natural diurnal variations in thickness were measured on a separate day and compensated for in subsequent analyses. RESULTS Following 3h of lens wear, statistically significant tissue thinning was observed across all quadrants, with a mean decrease in thickness of -24.1±3.6μm (p<0.001), which diminished, but did not return to baseline 3h after lens removal (-16.9±1.9μm, p<0.001). The largest tissue compression was observed in the superior quadrant (-49.9±8.5μm, p<0.01) and in the annular zone 1.5mm from the scleral spur (-48.2±5.7μm), corresponding to the approximate edge of the lens landing zone. Compression of the conjunctiva/episclera accounted for about 70% of the changes. CONCLUSIONS Optimal fitting miniscleral contact lenses worn for three hours resulted in significant tissue compression in young healthy eyes, with the greatest thinning observed superiorly, potentially due to the additional force of the eyelid, with a partial recovery of compression 3h after lens removal. Most of the morphological changes occur in the conjunctiva/episclera layers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The informal taxon ‘genus Chile’ of Brundin, based solely on pupal exuviae of a podonomine Chironomidae, has remained inadequately known for half a century. New collections reveal life associations, and provide molecular data to hypothesise a precise phylogenetic placement in the austral Podonominae. A densely sampled molecular phylogeny based on two nuclear and one mitochondrial DNA markers shows ‘genus Chile’ to be the sister group to Podonomopsis Brundin, 1966. Within Podonomopsis a clade of South American species is sister to all Australian species. We discuss how to rank such a sister group taxon and treat ‘genus Chile’ as a new subgenus Araucanopsis, subg. nov. with the new species, Podonomopsis (Araucanopsis) avelasse, sp. nov. from Chile and Argentina as genotype of the monotypic subgenus. We describe P. (A.) avelasse in all stages and provide an expanded diagnosis and description of Podonomopsis to include Araucanopsis. A dated biogeographic hypothesis (chronogram) infers the most recent common ancestor (tmcra) of expanded Podonomopsis at 95 million years ago (Mya) (68–122 Mya 95% highest posterior density), ‘core’ Podonomopsis at 83 Mya (58–108) and Australian Podonomopsis at 65 Mya (44–87). All dates are before the South America–Australia geological separation through Antarctica, supporting previous conclusions that the taxon distribution is ‘Gondwanan’ in origin. Podonomopsis, even as expanded here, remains unknown from New Zealand or elsewhere on extant Zealandia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effective leaders are believed to inspire followers by providing inclusive visions of the future that followers can identify with. In the present study, we examined the neural mechanisms underlying this process, testing key hypotheses derived from transformational and social identity approaches to leadership. While undergoing functional MRI, supporters from the two major Australian political parties (Liberal vs. Labor) were presented with inspirational collective-oriented and noninspirational personal-oriented statements made by in-group and out-group leaders. Imaging data revealed that inspirational (rather than noninspirational) statements from in-group leaders were associated with increased activation in the bilateral rostral inferior parietal lobule, pars opercularis, and posterior midcingulate cortex: brain areas that are typically implicated in controlling semantic information processing. In contrast, for out-group leaders, greater activation in these areas was associated with noninspirational statements. In addition, noninspirational statements by in-group (but not out-group) leaders resulted in increased activation in the medial prefrontal cortex, an area typically associated with reasoning about a person’s mental state. These results show that followers processed identical statements qualitatively differently as a function of leaders’ group membership, thus demonstrating that shared identity acts as an amplifier for inspirational leadership communication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thickness measurements derived from optical coherence tomography (OCT) images of the eye are a fundamental clinical and research metric, since they provide valuable information regarding the eye’s anatomical and physiological characteristics, and can assist in the diagnosis and monitoring of numerous ocular conditions. Despite the importance of these measurements, limited attention has been given to the methods used to estimate thickness in OCT images of the eye. Most current studies employing OCT use an axial thickness metric, but there is evidence that axial thickness measures may be biased by tilt and curvature of the image. In this paper, standard axial thickness calculations are compared with a variety of alternative metrics for estimating tissue thickness. These methods were tested on a data set of wide-field chorio-retinal OCT scans (field of view (FOV) 60° x 25°) to examine their performance across a wide region of interest and to demonstrate the potential effect of curvature of the posterior segment of the eye on the thickness estimates. Similarly, the effect of image tilt was systematically examined with the same range of proposed metrics. The results demonstrate that image tilt and curvature of the posterior segment can affect axial tissue thickness calculations, while alternative metrics, which are not biased by these effects, should be considered. This study demonstrates the need to consider alternative methods to calculate tissue thickness in order to avoid measurement error due to image tilt and curvature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this paper is to provide a Bayesian formulation of the so-called magnitude-based inference approach to quantifying and interpreting effects, and in a case study example provide accurate probabilistic statements that correspond to the intended magnitude-based inferences. The model is described in the context of a published small-scale athlete study which employed a magnitude-based inference approach to compare the effect of two altitude training regimens (live high-train low (LHTL), and intermittent hypoxic exposure (IHE)) on running performance and blood measurements of elite triathletes. The posterior distributions, and corresponding point and interval estimates, for the parameters and associated effects and comparisons of interest, were estimated using Markov chain Monte Carlo simulations. The Bayesian analysis was shown to provide more direct probabilistic comparisons of treatments and able to identify small effects of interest. The approach avoided asymptotic assumptions and overcame issues such as multiple testing. Bayesian analysis of unscaled effects showed a probability of 0.96 that LHTL yields a substantially greater increase in hemoglobin mass than IHE, a 0.93 probability of a substantially greater improvement in running economy and a greater than 0.96 probability that both IHE and LHTL yield a substantially greater improvement in maximum blood lactate concentration compared to a Placebo. The conclusions are consistent with those obtained using a ‘magnitude-based inference’ approach that has been promoted in the field. The paper demonstrates that a fully Bayesian analysis is a simple and effective way of analysing small effects, providing a rich set of results that are straightforward to interpret in terms of probabilistic statements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Birds represent the most diverse extant tetrapod clade, with ca. 10,000 extant species, and the timing of the crown avian radiation remains hotly debated. The fossil record supports a primarily Cenozoic radiation of crown birds, whereas molecular divergence dating analyses generally imply that this radiation was well underway during the Cretaceous. Furthermore, substantial differences have been noted between published divergence estimates. These have been variously attributed to clock model, calibration regime, and gene type. One underappreciated phenomenon is that disparity between fossil ages and molecular dates tends to be proportionally greater for shallower nodes in the avian Tree of Life. Here, we explore potential drivers of disparity in avian divergence dates through a set of analyses applying various calibration strategies and coding methods to a mitochondrial genome dataset and an 18-gene nuclear dataset, both sampled across 72 taxa. Our analyses support the occurrence of two deep divergences (i.e., the Palaeognathae/Neognathae split and the Galloanserae/Neoaves split) well within the Cretaceous, followed by a rapid radiation of Neoaves near the K-Pg boundary. However, 95% highest posterior density intervals for most basal divergences in Neoaves cross the boundary, and we emphasize that, barring unreasonably strict prior distributions, distinguishing between a rapid Early Paleocene radiation and a Late Cretaceous radiation may be beyond the resolving power of currently favored divergence dating methods. In contrast to recent observations for placental mammals, constraining all divergences within Neoaves to occur in the Cenozoic does not result in unreasonably high inferred substitution rates. Comparisons of nuclear DNA (nDNA) versus mitochondrial DNA (mtDNA) datasets and NT- versus RY-coded mitochondrial data reveal patterns of disparity that are consistent with substitution model misspecifications that result in tree compression/tree extension artifacts, which may explain some discordance between previous divergence estimates based on different sequence types. Comparisons of fully calibrated and nominally calibrated trees support a correlation between body mass and apparent dating error. Overall, our results are consistent with (but do not require) a Paleogene radiation for most major clades of crown birds.