187 resultados para Planing-machines.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction Electronic medication administration record (eMAR) systems are promoted as a potential intervention to enhance medication safety in residential aged care facilities (RACFs). The purpose of this study was to conduct an in-practice evaluation of an eMAR being piloted in one Australian RACF before its roll out, and to provide recommendations for system improvements. Methods A multidisciplinary team conducted direct observations of workflow (n=34 hours) in the RACF site and the community pharmacy. Semi-structured interviews (n=5) with RACF staff and the community pharmacist were conducted to investigate their views of the eMAR system. Data were analysed using a grounded theory approach to identify challenges associated with the design of the eMAR system. Results The current eMAR system does not offer an end-to-end solution for medication management. Many steps, including prescribing by doctors and communication with the community pharmacist, are still performed manually using paper charts and fax machines. Five major challenges associated with the design of eMAR system were identified: limited interactivity; inadequate flexibility; problems related to information layout and semantics; the lack of relevant decision support; and system maintenance issues.We suggest recommendations to improve the design of the eMAR system and to optimize existing workflows. Discussion Immediate value can be achieved by improving the system interactivity, reducing inconsistencies in data entry design and offering dedicated organisational support to minimise connectivity issues. Longer-term benefits can be achieved by adding decision support features and establishing system interoperability requirements with stakeholder groups (e.g. community pharmacies) prior to system roll out. In-practice evaluations of technologies like eMAR system have great value in identifying design weaknesses which inhibit optimal system use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In competitive combat sporting environments like boxing, the statistics on a boxer's performance, including the amount and type of punches thrown, provide a valuable source of data and feedback which is routinely used for coaching and performance improvement purposes. This paper presents a robust framework for the automatic classification of a boxer's punches. Overhead depth imagery is employed to alleviate challenges associated with occlusions, and robust body-part tracking is developed for the noisy time-of-flight sensors. Punch recognition is addressed through both a multi-class SVM and Random Forest classifiers. A coarse-to-fine hierarchical SVM classifier is presented based on prior knowledge of boxing punches. This framework has been applied to shadow boxing image sequences taken at the Australian Institute of Sport with 8 elite boxers. Results demonstrate the effectiveness of the proposed approach, with the hierarchical SVM classifier yielding a 96% accuracy, signifying its suitability for analysing athletes punches in boxing bouts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this research we modelled computer network devices to ensure their communication behaviours meet various network standards. By modelling devices as finite-state machines and examining their properties in a range of configurations, we discovered a flaw in a common network protocol and produced a technique to improve organisations' network security against data theft.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of unsupervised anomaly detection arises in a wide variety of practical applications. While one-class support vector machines have demonstrated their effectiveness as an anomaly detection technique, their ability to model large datasets is limited due to their memory and time complexity for training. To address this issue for supervised learning of kernel machines, there has been growing interest in random projection methods as an alternative to the computationally expensive problems of kernel matrix construction and sup-port vector optimisation. In this paper we leverage the theory of nonlinear random projections and propose the Randomised One-class SVM (R1SVM), which is an efficient and scalable anomaly detection technique that can be trained on large-scale datasets. Our empirical analysis on several real-life and synthetic datasets shows that our randomised 1SVM algorithm achieves comparable or better accuracy to deep auto encoder and traditional kernelised approaches for anomaly detection, while being approximately 100 times faster in training and testing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Identifying unusual or anomalous patterns in an underlying dataset is an important but challenging task in many applications. The focus of the unsupervised anomaly detection literature has mostly been on vectorised data. However, many applications are more naturally described using higher-order tensor representations. Approaches that vectorise tensorial data can destroy the structural information encoded in the high-dimensional space, and lead to the problem of the curse of dimensionality. In this paper we present the first unsupervised tensorial anomaly detection method, along with a randomised version of our method. Our anomaly detection method, the One-class Support Tensor Machine (1STM), is a generalisation of conventional one-class Support Vector Machines to higher-order spaces. 1STM preserves the multiway structure of tensor data, while achieving significant improvement in accuracy and efficiency over conventional vectorised methods. We then leverage the theory of nonlinear random projections to propose the Randomised 1STM (R1STM). Our empirical analysis on several real and synthetic datasets shows that our R1STM algorithm delivers comparable or better accuracy to a state-of-the-art deep learning method and traditional kernelised approaches for anomaly detection, while being approximately 100 times faster in training and testing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Technology is increasingly infiltrating all aspects of our lives and the rapid uptake of devices that live near, on or in our bodies are facilitating radical new ways of working, relating and socialising. This distribution of technology into the very fabric of our everyday life creates new possibilities, but also raises questions regarding our future relationship with data and the quantified self. By embedding technology into the fabric of our clothes and accessories, it becomes ‘wearable’. Such ‘wearables’ enable the acquisition of and the connection to vast amounts of data about people and environments in order to provide life-augmenting levels of interactivity. Wearable sensors for example, offer the potential for significant benefits in the future management of our wellbeing. Fitness trackers such as ‘Fitbit’ and ‘Garmen’ provide wearers with the ability to monitor their personal fitness indicators while other wearables provide healthcare professionals with information that improves diagnosis. While the rapid uptake of wearables may offer unique and innovative opportunities, there are also concerns surrounding the high levels of data sharing that come as a consequence of these technologies. As more ‘smart’ devices connect to the Internet, and as technology becomes increasingly available (e.g. via Wi-Fi, Bluetooth), more products, artefacts and things are becoming interconnected. This digital connection of devices is called The ‘Internet of Things’ (IoT). IoT is spreading rapidly, with many traditionally non-online devices becoming increasingly connected; products such as mobile phones, fridges, pedometers, coffee machines, video cameras, cars and clothing. The IoT is growing at a rapid rate with estimates indicating that by 2020 there will be over 25 billion connected things globally. As the number of devices connected to the Internet increases, so too does the amount of data collected and type of information that is stored and potentially shared. The ability to collect massive amounts of data - known as ‘big data’ - can be used to better understand and predict behaviours across all areas of research from societal and economic to environmental and biological. With this kind of information at our disposal, we have a more powerful lens with which to perceive the world, and the resulting insights can be used to design more appropriate products, services and systems. It can however, also be used as a method of surveillance, suppression and coercion by governments or large organisations. This is becoming particularly apparent in advertising that targets audiences based on the individual preferences revealed by the data collected from social media and online devices such as GPS systems or pedometers. This type of technology also provides fertile ground for public debates around future fashion, identity and broader social issues such as culture, politics and the environment. The potential implications of these type of technological interactions via wearables, through and with the IoT, have never been more real or more accessible. But, as highlighted, this interconnectedness also brings with it complex technical, ethical and moral challenges. Data security and the protection of privacy and personal information will become ever more present in current and future ethical and moral debates of the 21st century. This type of technology is also a stepping-stone to a future that includes implantable technology, biotechnologies, interspecies communication and augmented humans (cyborgs). Technologies that live symbiotically and perpetually in our bodies, the built environment and the natural environment are no longer the stuff of science fiction; it is in fact a reality. So, where next?... The works exhibited in Wear Next_ provide a snapshot into the broad spectrum of wearables in design and in development internationally. This exhibition has been curated to serve as a platform for enhanced broader debate around future technology, our mediated future-selves and the evolution of human interactions. As you explore the exhibition, may we ask that you pause and think to yourself, what might we... Wear Next_? WEARNEXT ONLINE LISTINGS AND MEDIA COVERAGE: http://indulgemagazine.net/wear-next/ http://www.weekendnotes.com/wear-next-exhibition-gallery-artisan/ http://concreteplayground.com/brisbane/event/wear-next_/ http://www.nationalcraftinitiative.com.au/news_and_events/event/48/wear-next http://bneart.com/whats-on/wear-next_/ http://creativelysould.tumblr.com/post/124899079611/creative-weekend-art-edition http://www.abc.net.au/radionational/programs/breakfast/smartly-dressed-the-future-of-wearable-technology/6744374 http://couriermail.newspaperdirect.com/epaper/viewer.aspx RADIO COVERAGE http://www.abc.net.au/radionational/programs/breakfast/wear-next-exhibition-whats-next-for-wearable-technology/6745986 TELEVISION COVERAGE http://www.abc.net.au/radionational/programs/breakfast/wear-next-exhibition-whats-next-for-wearable-technology/6745986 https://au.news.yahoo.com/video/watch/29439742/how-you-could-soon-be-wearing-smart-clothes/#page1

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses the challenges of flood mapping using multispectral images. Quantitative flood mapping is critical for flood damage assessment and management. Remote sensing images obtained from various satellite or airborne sensors provide valuable data for this application, from which the information on the extent of flood can be extracted. However the great challenge involved in the data interpretation is to achieve more reliable flood extent mapping including both the fully inundated areas and the 'wet' areas where trees and houses are partly covered by water. This is a typical combined pure pixel and mixed pixel problem. In this paper, an extended Support Vector Machines method for spectral unmixing developed recently has been applied to generate an integrated map showing both pure pixels (fully inundated areas) and mixed pixels (trees and houses partly covered by water). The outputs were compared with the conventional mean based linear spectral mixture model, and better performance was demonstrated with a subset of Landsat ETM+ data recorded at the Daly River Basin, NT, Australia, on 3rd March, 2008, after a flood event.