402 resultados para Order-preserving Functions
Resumo:
In the medical and healthcare arena, patients‟ data is not just their own personal history but also a valuable large dataset for finding solutions for diseases. While electronic medical records are becoming popular and are used in healthcare work places like hospitals, as well as insurance companies, and by major stakeholders such as physicians and their patients, the accessibility of such information should be dealt with in a way that preserves privacy and security. Thus, finding the best way to keep the data secure has become an important issue in the area of database security. Sensitive medical data should be encrypted in databases. There are many encryption/ decryption techniques and algorithms with regard to preserving privacy and security. Currently their performance is an important factor while the medical data is being managed in databases. Another important factor is that the stakeholders should decide more cost-effective ways to reduce the total cost of ownership. As an alternative, DAS (Data as Service) is a popular outsourcing model to satisfy the cost-effectiveness but it takes a consideration that the encryption/ decryption modules needs to be handled by trustworthy stakeholders. This research project is focusing on the query response times in a DAS model (AES-DAS) and analyses the comparison between the outsourcing model and the in-house model which incorporates Microsoft built-in encryption scheme in a SQL Server. This research project includes building a prototype of medical database schemas. There are 2 types of simulations to carry out the project. The first stage includes 6 databases in order to carry out simulations to measure the performance between plain-text, Microsoft built-in encryption and AES-DAS (Data as Service). Particularly, the AES-DAS incorporates implementations of symmetric key encryption such as AES (Advanced Encryption Standard) and a Bucket indexing processor using Bloom filter. The results are categorised such as character type, numeric type, range queries, range queries using Bucket Index and aggregate queries. The second stage takes the scalability test from 5K to 2560K records. The main result of these simulations is that particularly as an outsourcing model, AES-DAS using the Bucket index shows around 3.32 times faster than a normal AES-DAS under the 70 partitions and 10K record-sized databases. Retrieving Numeric typed data takes shorter time than Character typed data in AES-DAS. The aggregation query response time in AES-DAS is not as consistent as that in MS built-in encryption scheme. The scalability test shows that the DBMS reaches in a certain threshold; the query response time becomes rapidly slower. However, there is more to investigate in order to bring about other outcomes and to construct a secured EMR (Electronic Medical Record) more efficiently from these simulations.
Resumo:
Cities have long held a fascination for people – as they grow and develop, there is a desire to know and understand the intricate interplay of elements that makes cities ‘live’. In part, this is a need for even greater efficiency in urban centres, yet the underlying quest is for a sustainable urban form. In order to make sense of the complex entities that we recognise cities to be, they have been compared to buildings, organisms and more recently machines. However the search for better and more elegant urban centres is hardly new, healthier and more efficient settlements were the aim of Modernism’s rational sub-division of functions, which has been translated into horizontal distribution through zoning, or vertical organisation thought highrise developments. However both of these approaches have been found to be unsustainable, as too many resources are required to maintain this kind or urbanisation and social consequences of either horizontal or vertical isolation must also be considered. From being absolute consumers of resources, of energy and of technology, cities need to change, to become sustainable in order to be more resilient and more efficient in supporting culture, society as well as economy. Our urban centres need to be re-imagined, re-conceptualised and re-defined, to match our changing society. One approach is to re-examine the compartmentalised, mono-functional approach of urban Modernism and to begin to investigate cities like ecologies, where every element supports and incorporates another, fulfilling more than just one function. This manner of seeing the city suggests a framework to guide the re-mixing of urban settlements. Beginning to understand the relationships between supporting elements and the nature of the connecting ‘web’ offers an invitation to investigate the often ignored, remnant spaces of cities. This ‘negative space’ is the residual from which space and place are carved out in the Contemporary city, providing the link between elements of urban settlement. Like all successful ecosystems, cities need to evolve and change over time in order to effectively respond to different lifestyles, development in culture and society as well as to meet environmental challenges. This paper seeks to investigate the role that negative space could have in the reorganisation of the re-mixed city. The space ‘in-between’ is analysed as an opportunity for infill development or re-development which provides to the urban settlement the variety that is a pre-requisite for ecosystem resilience. An analysis of the urban form is suggested as an empirical tool to map the opportunities already present in the urban environment and negative space is evaluated as a key element in achieving a positive development able to distribute diverse environmental and social facilities in the city.
Resumo:
Percolation flow problems are discussed in many research fields, such as seepage hydraulics, groundwater hydraulics, groundwater dynamics and fluid dynamics in porous media. Many physical processes appear to exhibit fractional-order behavior that may vary with time, or space, or space and time. The theory of pseudodifferential operators and equations has been used to deal with this situation. In this paper we use a fractional Darcys law with variable order Riemann-Liouville fractional derivatives, this leads to a new variable-order fractional percolation equation. In this paper, a new two-dimensional variable-order fractional percolation equation is considered. A new implicit numerical method and an alternating direct method for the two-dimensional variable-order fractional model is proposed. Consistency, stability and convergence of the implicit finite difference method are established. Finally, some numerical examples are given. The numerical results demonstrate the effectiveness of the methods. This technique can be used to simulate a three-dimensional variable-order fractional percolation equation.
Resumo:
Fractional differential equation is used to describe a fractal model of mobile/immobile transport with a power law memory function. This equation is the limiting equation that governs continuous time random walks with heavy tailed random waiting times. In this paper, we firstly propose a finite difference method to discretize the time variable and obtain a semi-discrete scheme. Then we discuss its stability and convergence. Secondly we consider a meshless method based on radial basis functions (RBF) to discretize the space variable. By contrast to conventional FDM and FEM, the meshless method is demonstrated to have distinct advantages: calculations can be performed independent of a mesh, it is more accurate and it can be used to solve complex problems. Finally the convergence order is verified from a numerical example is presented to describe the fractal model of mobile/immobile transport process with different problem domains. The numerical results indicate that the present meshless approach is very effective for modeling and simulating of fractional differential equations, and it has good potential in development of a robust simulation tool for problems in engineering and science that are governed by various types of fractional differential equations.
Resumo:
In this paper, we consider a space Riesz fractional advection-dispersion equation. The equation is obtained from the standard advection-diffusion equation by replacing the ¯rst-order and second-order space derivatives by the Riesz fractional derivatives of order β 1 Є (0; 1) and β2 Є(1; 2], respectively. Riesz fractional advection and dispersion terms are approximated by using two fractional centered difference schemes, respectively. A new weighted Riesz fractional ¯nite difference approximation scheme is proposed. When the weighting factor Ѳ = 1/2, a second- order accurate numerical approximation scheme for the Riesz fractional advection-dispersion equation is obtained. Stability, consistency and convergence of the numerical approximation scheme are discussed. A numerical example is given to show that the numerical results are in good agreement with our theoretical analysis.
Resumo:
Many physical processes exhibit fractional order behavior that varies with time or space. The continuum of order in the fractional calculus allows the order of the fractional operator to be considered as a variable. In this paper, we consider the time variable fractional order mobile-immobile advection-dispersion model. Numerical methods and analyses of stability and convergence for the fractional partial differential equations are quite limited and difficult to derive. This motivates us to develop efficient numerical methods as well as stability and convergence of the implicit numerical methods for the fractional order mobile immobile advection-dispersion model. In the paper, we use the Coimbra variable time fractional derivative which is more efficient from the numerical standpoint and is preferable for modeling dynamical systems. An implicit Euler approximation for the equation is proposed and then the stability of the approximation are investigated. As for the convergence of the numerical scheme we only consider a special case, i.e. the time fractional derivative is independent of time variable t. The case where the time fractional derivative depends both the time variable t and the space variable x will be considered in the future work. Finally, numerical examples are provided to show that the implicit Euler approximation is computationally efficient.
Resumo:
In this paper we consider the variable order time fractional diffusion equation. We adopt the Coimbra variable order (VO) time fractional operator, which defines a consistent method for VO differentiation of physical variables. The Coimbra variable order fractional operator also can be viewed as a Caputo-type definition. Although this definition is the most appropriate definition having fundamental characteristics that are desirable for physical modeling, numerical methods for fractional partial differential equations using this definition have not yet appeared in the literature. Here an approximate scheme is first proposed. The stability, convergence and solvability of this numerical scheme are discussed via the technique of Fourier analysis. Numerical examples are provided to show that the numerical method is computationally efficient. Crown Copyright © 2012 Published by Elsevier Inc. All rights reserved.
Resumo:
Anomalous subdiffusion equations have in recent years received much attention. In this paper, we consider a two-dimensional variable-order anomalous subdiffusion equation. Two numerical methods (the implicit and explicit methods) are developed to solve the equation. Their stability, convergence and solvability are investigated by the Fourier method. Moreover, the effectiveness of our theoretical analysis is demonstrated by some numerical examples. © 2011 American Mathematical Society.