192 resultados para Non-Linear Optimization
Resumo:
Commodity price modeling is normally approached in terms of structural time-series models, in which the different components (states) have a financial interpretation. The parameters of these models can be estimated using maximum likelihood. This approach results in a non-linear parameter estimation problem and thus a key issue is how to obtain reliable initial estimates. In this paper, we focus on the initial parameter estimation problem for the Schwartz-Smith two-factor model commonly used in asset valuation. We propose the use of a two-step method. The first step considers a univariate model based only on the spot price and uses a transfer function model to obtain initial estimates of the fundamental parameters. The second step uses the estimates obtained in the first step to initialize a re-parameterized state-space-innovations based estimator, which includes information related to future prices. The second step refines the estimates obtained in the first step and also gives estimates of the remaining parameters in the model. This paper is part tutorial in nature and gives an introduction to aspects of commodity price modeling and the associated parameter estimation problem.
Resumo:
Unbalanced or non-linear loads result in distorted stator currents and electromagnetic torque pulsations in stand-alone doubly fed induction generators (DFIGs). This study proposes the use of a proportional-integral repetitive control (PIRC) scheme so as to mitigate the levels of harmonic and unbalance at the stator terminals of the DFIG. The PIRC is structurally simpler and requires much less computation than existing methods. Analysis of the PIRC operation and the methodology to determine the control parameters is included. Simulation study as well as laboratory test measurements demonstrate clearly the effectiveness of the proposed PIRC control scheme.
Resumo:
The relationship between temperature and mortality is non-linear and the effect estimates depend on the threshold temperatures selected. However, little is known about whether threshold temperatures differ with age or cause of deaths in the Southern Hemisphere. We conducted polynomial distributed lag non-linear models to assess the threshold temperatures for mortality from all ages (Dall), aged from 15 to 64 (D15-64), 65- 84(D65-84), ≥85 years (D85+), respiratory (RD) and cardiovascular diseases (CVD) in Brisbane, Australia, 1996–2004. We examined both hot and cold thresholds, and the lags of up to 15 days for cold effects and 3 days for hot effects. Results show that for the current day, the cold threshold was 20°C and the hot threshold was 28°C for the groups of Dall, D15-64 and D85+. The cold threshold was higher (23°C) for the group of D65-84 and lower (21°C) for the group of CVD. The hot threshold was higher (29°C) for the group of D65-84 and lower (27°C) for the group of RD. Compared to the current day, for the cold effects of up to 15-day lags, the threshold was lower for the group of D15-64, and the thresholds were higher for the groups of D65-84, D85+, RD and CVD; while for the hot effects of 3-day lags, the threshold was higher for the group of D15-64 and the thresholds were lower for the groups of D65-84 and RD. Temperature thresholds appeared to differ with age and death categories. The elderly and deaths from RD and CVD were more sensitive to temperature stress than the adult group. These findings may have implications in the assessment of temperature-related mortality and development of weather/health warning systems.
Resumo:
Background Heatwaves could cause the population excess death numbers to be ranged from tens to thousands within a couple of weeks in a local area. An excess mortality due to a special event (e.g., a heatwave or an epidemic outbreak) is estimated by subtracting the mortality figure under ‘normal’ conditions from the historical daily mortality records. The calculation of the excess mortality is a scientific challenge because of the stochastic temporal pattern of the daily mortality data which is characterised by (a) the long-term changing mean levels (i.e., non-stationarity); (b) the non-linear temperature-mortality association. The Hilbert-Huang Transform (HHT) algorithm is a novel method originally developed for analysing the non-linear and non-stationary time series data in the field of signal processing, however, it has not been applied in public health research. This paper aimed to demonstrate the applicability and strength of the HHT algorithm in analysing health data. Methods Special R functions were developed to implement the HHT algorithm to decompose the daily mortality time series into trend and non-trend components in terms of the underlying physical mechanism. The excess mortality is calculated directly from the resulting non-trend component series. Results The Brisbane (Queensland, Australia) and the Chicago (United States) daily mortality time series data were utilized for calculating the excess mortality associated with heatwaves. The HHT algorithm estimated 62 excess deaths related to the February 2004 Brisbane heatwave. To calculate the excess mortality associated with the July 1995 Chicago heatwave, the HHT algorithm needed to handle the mode mixing issue. The HHT algorithm estimated 510 excess deaths for the 1995 Chicago heatwave event. To exemplify potential applications, the HHT decomposition results were used as the input data for a subsequent regression analysis, using the Brisbane data, to investigate the association between excess mortality and different risk factors. Conclusions The HHT algorithm is a novel and powerful analytical tool in time series data analysis. It has a real potential to have a wide range of applications in public health research because of its ability to decompose a nonlinear and non-stationary time series into trend and non-trend components consistently and efficiently.
Resumo:
In the current climate of global economic volatility, there are increasing calls for training in enterprising skills and entrepreneurship to underpin the systemic innovation required for even medium-term business sustainability. The skills long-recognised as the essential for entrepreneurship now appear on the list of employability skills demanded by industry. The QUT Innovation Space (QIS) was an experiment aimed at delivering entrepreneurship education (EE), as an extra-curricular platform across the university, to the undergraduate students of an Australian higher education institute. It was an ambitious project that built on overseas models of EE studied during an Australian Learning and Teaching Council (ALTC) Teaching Fellowship (Collet, 2011) and implemented those approaches across an institute. Such EE approaches have not been attempted in an Australian university. The project tested resonance not only with the student population, from the perspective of what worked and what didn’t work, but also with every level of university operations. Such information is needed to inform the development of EE in the Australian university landscape. The QIS comprised a physical co-working space, virtual sites (web, Twitter and Facebook) and a network of entrepreneurial mentors, colleagues, and students. All facets of the QIS enabled connection between like-minded individuals that underpins the momentum needed for a project of this nature. The QIS became an innovation community within QUT. This report serves two purposes. First, as an account of the QIS project and its evolution, the report serves to identify the student demand for skills and training as well as barriers and facilitators of the activities that promote EE in an Australian university context. Second, the report serves as a how-to manual, in the tradition of many tomes on EE, outlining the QIS activities that worked as well as those that failed. The activities represent one measure of QIS outcomes and are described herein to facilitate implementation in other institutes. The QIS initially aimed to adopt an incubation model for training in EE. The ‘learning by doing’ model for new venture creation is a highly successful and high profile training approach commonly found in overseas contexts. However, the greatest demand of the QUT student population was not for incubation and progression of a developed entrepreneurial intent, but rather for training that instilled enterprising skills in the individual. These two scenarios require different training approaches (Fayolle and Gailly, 2008). The activities of the QIS evolved to meet that student demand. In addressing enterprising skills, the QIS developed the antecedents of entrepreneurialism (i.e., entrepreneurial attitudes, motivation and behaviours) including high-level skills around risk-taking, effective communication, opportunity recognition and action-orientation. In focusing on the would-be entrepreneur and not on the (initial) idea per se, the QIS also fostered entrepreneurial outcomes that would never have gained entry to the rigid stage-gated incubation model proposed for the original QIS framework. Important lessons learned from the project for development of an innovation community include the need to: 1. Evaluate the context of the type of EE program to be delivered and the student demand for the skills training (as noted above). 2. Create a community that builds on three dimensions: a physical space, a virtual environment and a network of mentors and partners. 3. Supplement the community with external partnerships that aid in delivery of skills training materials. 4. Ensure discovery of the community through the use of external IT services to deliver advertising and networking outlets. 5. Manage unrealistic student expectations of billion dollar products. 6. Continuously renew and rebuild simple activities to maintain student engagement. 7. Accommodate the non-university end-user group within the community. 8. Recognise and address the skills bottlenecks that serve as barriers to concept progression; in this case, externally provided IT and programming skills. 9. Use available on-line and published resources rather than engage in constructing project-specific resources that quickly become obsolete. 10. Avoid perceptions of faculty ownership and operate in an increasingly competitive environment. 11. Recognise that the continuum between creativity/innovation and entrepreneurship is complex, non-linear and requires different training regimes during the different phases of the pipeline. One small entity, such as the QIS, cannot address them all. The QIS successfully designed, implemented and delivered activities that included events, workshops, seminars and services to QUT students in the extra-curricular space. That the QIS project can be considered successful derives directly from the outcomes. First, the QIS project changed the lives of emerging QUT student entrepreneurs. Also, the QIS activities developed enterprising skills in students who did not necessarily have a business proposition, at the time. Second, successful outcomes of the QIS project are evidenced as the embedding of most, perhaps all, of the QIS activities in a new Chancellery-sponsored initiative: the Leadership Development and Innovation Program hosted by QUT Student Support Services. During the course of the QIS project, the Brisbane-based innovation ecosystem underwent substantial change. From a dearth of opportunities for the entrepreneurially inclined, there is now a plethora of entities that cater for a diversity of innovation-related activities. While the QIS evolved with the landscape, the demand endpoint of the QIS activities still highlights a gap in the local and national innovation ecosystems. The freedom to experiment and to fail is not catered for by the many new entities seeking to build viable businesses on the back of the innovation push. The onus of teaching the enterprising skills, which are the employability skills now demanded by industry, remains the domain of the higher education sector.
Resumo:
Solving indeterminate algebraic equations in integers is a classic topic in the mathematics curricula across grades. At the undergraduate level, the study of solutions of non-linear equations of this kind can be motivated by the use of technology. This article shows how the unity of geometric contextualization and spreadsheet-based amplification of this topic can provide a discovery experience for prospective secondary teachers and information technology students. Such experience can be extended to include a transition from a computationally driven conjecturing to a formal proof based on a number of simple yet useful techniques.
Resumo:
This paper demonstrates the use of a spreadsheet in exploring non-linear difference equations that describe digital control systems used in radio engineering, communication and computer architecture. These systems, being the focus of intensive studies of mathematicians and engineers over the last 40 years, may exhibit extremely complicated behaviour interpreted in contemporary terms as transition from global asymptotic stability to chaos through period-doubling bifurcations. The authors argue that embedding advanced mathematical ideas in the technological tool enables one to introduce fundamentals of discrete control systems in tertiary curricula without learners having to deal with complex machinery that rigorous mathematical methods of investigation require. In particular, in the appropriately designed spreadsheet environment, one can effectively visualize a qualitative difference in the behviour of systems with different types of non-linear characteristic.
Resumo:
The occurrence of extreme water level events along low-lying, highly populated and/or developed coastlines can lead to devastating impacts on coastal infrastructure. Therefore it is very important that the probabilities of extreme water levels are accurately evaluated to inform flood and coastal management and for future planning. The aim of this study was to provide estimates of present day extreme total water level exceedance probabilities around the whole coastline of Australia, arising from combinations of mean sea level, astronomical tide and storm surges generated by both extra-tropical and tropical storms, but exclusive of surface gravity waves. The study has been undertaken in two main stages. In the first stage, a high-resolution (~10 km along the coast) hydrodynamic depth averaged model has been configured for the whole coastline of Australia using the Danish Hydraulics Institute’s Mike21 modelling suite of tools. The model has been forced with astronomical tidal levels, derived from the TPX07.2 global tidal model, and meteorological fields, from the US National Center for Environmental Prediction’s global reanalysis, to generate a 61-year (1949 to 2009) hindcast of water levels. This model output has been validated against measurements from 30 tide gauge sites around Australia with long records. At each of the model grid points located around the coast, time series of annual maxima and the several highest water levels for each year were derived from the multi-decadal water level hindcast and have been fitted to extreme value distributions to estimate exceedance probabilities. Stage 1 provided a reliable estimate of the present day total water level exceedance probabilities around southern Australia, which is mainly impacted by extra-tropical storms. However, as the meteorological fields used to force the hydrodynamic model only weakly include the effects of tropical cyclones the resultant water levels exceedance probabilities were underestimated around western, northern and north-eastern Australia at higher return periods. Even if the resolution of the meteorological forcing was adequate to represent tropical cyclone-induced surges, multi-decadal periods yielded insufficient instances of tropical cyclones to enable the use of traditional extreme value extrapolation techniques. Therefore, in the second stage of the study, a statistical model of tropical cyclone tracks and central pressures was developed using histroic observations. This model was then used to generate synthetic events that represented 10,000 years of cyclone activity for the Australia region, with characteristics based on the observed tropical cyclones over the last ~40 years. Wind and pressure fields, derived from these synthetic events using analytical profile models, were used to drive the hydrodynamic model to predict the associated storm surge response. A random time period was chosen, during the tropical cyclone season, and astronomical tidal forcing for this period was included to account for non-linear interactions between the tidal and surge components. For each model grid point around the coast, annual maximum total levels for these synthetic events were calculated and these were used to estimate exceedance probabilities. The exceedance probabilities from stages 1 and 2 were then combined to provide a single estimate of present day extreme water level probabilities around the whole coastline of Australia.
Resumo:
NLS is one of the stream ciphers submitted to the eSTREAM project. We present a distinguishing attack on NLS by Crossword Puzzle (CP) attack method which is introduced in this paper. We build the distinguisher by using linear approximations of both the non-linear feedback shift register (NFSR) and the nonlinear filter function (NLF). Since the bias of the distinguisher depends on the Konst value, which is a key-dependent word, we present the graph showing how the bias of distinguisher vary with Konst. In result, we estimate the bias of the distinguisher to be around O(2^−30). Therefore, we claim that NLS is distinguishable from truly random cipher after observing O(2^60) keystream words. The experiments also show that our distinguishing attack is successful on 90.3% of Konst among 2^32 possible values. We extend the CP attack to NLSv2 which is a tweaked version of NLS. In result, we build a distinguisher which has the bias of around 2− 48. Even though this attack is below the eSTREAM criteria (2^−40), the security margin of NLSv2 seems to be too low.
Resumo:
In this paper we introduce a new technique to obtain the slow-motion dynamics in nonequilibrium and singularly perturbed problems characterized by multiple scales. Our method is based on a straightforward asymptotic reduction of the order of the governing differential equation and leads to amplitude equations that describe the slowly-varying envelope variation of a uniformly valid asymptotic expansion. This may constitute a simpler and in certain cases a more general approach toward the derivation of asymptotic expansions, compared to other mainstream methods such as the method of Multiple Scales or Matched Asymptotic expansions because of its relation with the Renormalization Group. We illustrate our method with a number of singularly perturbed problems for ordinary and partial differential equations and recover certain results from the literature as special cases. © 2010 - IOS Press and the authors. All rights reserved.
Resumo:
We have developed a technique that circumvents the process of elimination of secular terms and reproduces the uniformly valid approximations, amplitude equations, and first integrals. The technique is based on a rearrangement of secular terms and their grouping into the secular series that multiplies the constants of the asymptotic expansion. We illustrate the technique by deriving amplitude equations for standard nonlinear oscillator and boundary-layer problems. © 2008 The American Physical Society.
Resumo:
In this paper the method of renormalization group (RG) [Phys. Rev. E 54, 376 (1996)] is related to the well-known approximations of Rytov and Born used in wave propagation in deterministic and random media. Certain problems in linear and nonlinear media are examined from the viewpoint of RG and compared with the literature on Born and Rytov approximations. It is found that the Rytov approximation forms a special case of the asymptotic expansion generated by the RG, and as such it gives a superior approximation to the exact solution compared with its Born counterpart. Analogous conclusions are reached for nonlinear equations with an intensity-dependent index of refraction where the RG recovers the exact solution. © 2008 Optical Society of America.