542 resultados para Multiple classification
Resumo:
Background The vast sequence divergence among different virus groups has presented a great challenge to alignment-based analysis of virus phylogeny. Due to the problems caused by the uncertainty in alignment, existing tools for phylogenetic analysis based on multiple alignment could not be directly applied to the whole-genome comparison and phylogenomic studies of viruses. There has been a growing interest in alignment-free methods for phylogenetic analysis using complete genome data. Among the alignment-free methods, a dynamical language (DL) method proposed by our group has successfully been applied to the phylogenetic analysis of bacteria and chloroplast genomes. Results In this paper, the DL method is used to analyze the whole-proteome phylogeny of 124 large dsDNA viruses and 30 parvoviruses, two data sets with large difference in genome size. The trees from our analyses are in good agreement to the latest classification of large dsDNA viruses and parvoviruses by the International Committee on Taxonomy of Viruses (ICTV). Conclusions The present method provides a new way for recovering the phylogeny of large dsDNA viruses and parvoviruses, and also some insights on the affiliation of a number of unclassified viruses. In comparison, some alignment-free methods such as the CV Tree method can be used for recovering the phylogeny of large dsDNA viruses, but they are not suitable for resolving the phylogeny of parvoviruses with a much smaller genome size.
Resumo:
Workflow nets, a particular class of Petri nets, have become one of the standard ways to model and analyze workflows. Typically, they are used as an abstraction of the workflow that is used to check the so-called soundness property. This property guarantees the absence of livelocks, deadlocks, and other anomalies that can be detected without domain knowledge. Several authors have proposed alternative notions of soundness and have suggested to use more expressive languages, e.g., models with cancellations or priorities. This paper provides an overview of the different notions of soundness and investigates these in the presence of different extensions of workflow nets.We will show that the eight soundness notions described in the literature are decidable for workflow nets. However, most extensions will make all of these notions undecidable. These new results show the theoretical limits of workflow verification. Moreover, we discuss some of the analysis approaches described in the literature.
Resumo:
Objective To examine the prevalence of multiple types of maltreatment (MTM), potentially confounding factors and associations with depression, anxiety and self-esteem among adolescents in Viet Nam. Methods In 2006 we conducted a cross-sectional survey of 2591 students (aged 12–18 years; 52.1% female) from randomly-selected classes in eight secondary schools in urban (Hanoi) and rural (Hai Duong) areas of northern Viet Nam (response rate, 94.7%). Sequential multiple regression analyses were performed to estimate the relative influence of individual, family and social characteristics and of eight types of maltreatment, including physical, emotional and sexual abuse and physical or emotional neglect, on adolescent mental health. Findings Females reported more neglect and emotional abuse, whereas males reported more physical abuse, but no statistically significant difference was found between genders in the prevalence of sexual abuse. Adolescents were classified as having nil (32.6%), one (25.9%), two (20.7%), three (14.5%) or all four (6.3%) maltreatment types. Linear bivariate associations between MTM and depression, anxiety and low self-esteem were observed. After controlling for demographic and family factors, MTM showed significant independent effects. The proportions of the variance explained by the models ranged from 21% to 28%. Conclusion The combined influence of adverse individual and family background factors and of child maltreatment upon mental health in adolescents in Viet Nam is consistent with research in non-Asian countries. Emotional abuse was strongly associated with each health indicator. In Asian communities where child abuse is often construed as severe physical violence, it is important to emphasize the equally pernicious effects of emotional maltreatment.
Resumo:
The use of appropriate features to characterise an output class or object is critical for all classification problems. In order to find optimal feature descriptors for vegetation species classification in a power line corridor monitoring application, this article evaluates the capability of several spectral and texture features. A new idea of spectral–texture feature descriptor is proposed by incorporating spectral vegetation indices in statistical moment features. The proposed method is evaluated against several classic texture feature descriptors. Object-based classification method is used and a support vector machine is employed as the benchmark classifier. Individual tree crowns are first detected and segmented from aerial images and different feature vectors are extracted to represent each tree crown. The experimental results showed that the proposed spectral moment features outperform or can at least compare with the state-of-the-art texture descriptors in terms of classification accuracy. A comprehensive quantitative evaluation using receiver operating characteristic space analysis further demonstrates the strength of the proposed feature descriptors.
Resumo:
We have previously reported the use of a novel mini-sequencing protocol for detection of the factor V Leiden variant, the first nucleotide change (FNC) technology. This technology is based on a single nucleotide extension of a primer, which is hybridized immediately adjacent to the site of mutation. The extended nucleotide that carries a reporter molecule (fluorescein) has the power to discriminate the genotype at the site of mutation. More recently, the prothrombin 20210 and thermolabile methylene tetrahydrofolate reductase (MTHFR) 677 variants have been identified as possible risk factors associated with thrombophilia. This study describes the use of the FNC technology in a combined assay to detect factor V, prothrombin and MTHFR variants in a population of Australian blood donors, and describes the objective numerical methodology used to determine genotype cut-off values for each genetic variation. Using FNC to test 500 normal blood donors, the incidence of Factor V Leiden was 3.6% (all heterozygous), that of prothrombin 20210 was 2.8% (all heterozygous) and that of MTHFR was 10% (homozygous). The combined FNC technology offers a simple, rapid, automatable DNA-based test for the detection of these three important mutations that are associated with familial thrombophilia. (C) 2000 Lippincott Williams and Wilkins.
Resumo:
Aim. This paper is a report of a study to explore rural nurses' experiences of mentoring. Background. Mentoring has recently been proposed by governments, advocates and academics as a solution to the problem for retaining rural nurses in the Australian workforce. Action in the form of mentor development workshops has changed the way that some rural nurses now construct supportive relationships as mentoring. Method. A grounded theory design was used with nine rural nurses. Eleven semi-structured interviews were conducted in various states of Australia during 2004-2005. Situational analysis mapping techniques and frame analysis were used in combination with concurrent data generation and analysis and theoretical sampling. Findings. Experienced rural nurses cultivate novices through supportive mentoring relationships. The impetus for such relationships comes from their own histories of living and working in the same community, and this was termed 'live my work'. Rural nurses use multiple perspectives of self in order to manage their interactions with others in their roles as community members, consumers of healthcare services and nurses. Personal strategies adapted to local context constitute the skills that experienced rural nurses pass-on to neophyte rural nurses through mentoring, while at the same time protecting them through troubleshooting and translating local cultural norms. Conclusion. Living and working in the same community creates a set of complex challenges for novice rural nurses that are better faced with a mentor in place. Thus, mentoring has become an integral part of experienced rural nurses' practice to promote staff retention. © 2007 The Authors.
Resumo:
Sample complexity results from computational learning theory, when applied to neural network learning for pattern classification problems, suggest that for good generalization performance the number of training examples should grow at least linearly with the number of adjustable parameters in the network. Results in this paper show that if a large neural network is used for a pattern classification problem and the learning algorithm finds a network with small weights that has small squared error on the training patterns, then the generalization performance depends on the size of the weights rather than the number of weights. For example, consider a two-layer feedforward network of sigmoid units, in which the sum of the magnitudes of the weights associated with each unit is bounded by A and the input dimension is n. We show that the misclassification probability is no more than a certain error estimate (that is related to squared error on the training set) plus A3 √((log n)/m) (ignoring log A and log m factors), where m is the number of training patterns. This may explain the generalization performance of neural networks, particularly when the number of training examples is considerably smaller than the number of weights. It also supports heuristics (such as weight decay and early stopping) that attempt to keep the weights small during training. The proof techniques appear to be useful for the analysis of other pattern classifiers: when the input domain is a totally bounded metric space, we use the same approach to give upper bounds on misclassification probability for classifiers with decision boundaries that are far from the training examples.
Resumo:
Many of the classification algorithms developed in the machine learning literature, including the support vector machine and boosting, can be viewed as minimum contrast methods that minimize a convex surrogate of the 0–1 loss function. The convexity makes these algorithms computationally efficient. The use of a surrogate, however, has statistical consequences that must be balanced against the computational virtues of convexity. To study these issues, we provide a general quantitative relationship between the risk as assessed using the 0–1 loss and the risk as assessed using any nonnegative surrogate loss function. We show that this relationship gives nontrivial upper bounds on excess risk under the weakest possible condition on the loss function—that it satisfies a pointwise form of Fisher consistency for classification. The relationship is based on a simple variational transformation of the loss function that is easy to compute in many applications. We also present a refined version of this result in the case of low noise, and show that in this case, strictly convex loss functions lead to faster rates of convergence of the risk than would be implied by standard uniform convergence arguments. Finally, we present applications of our results to the estimation of convergence rates in function classes that are scaled convex hulls of a finite-dimensional base class, with a variety of commonly used loss functions.
Resumo:
Recent research on multiple kernel learning has lead to a number of approaches for combining kernels in regularized risk minimization. The proposed approaches include different formulations of objectives and varying regularization strategies. In this paper we present a unifying optimization criterion for multiple kernel learning and show how existing formulations are subsumed as special cases. We also derive the criterion’s dual representation, which is suitable for general smooth optimization algorithms. Finally, we evaluate multiple kernel learning in this framework analytically using a Rademacher complexity bound on the generalization error and empirically in a set of experiments.
Resumo:
We consider the problem of binary classification where the classifier can, for a particular cost, choose not to classify an observation. Just as in the conventional classification problem, minimization of the sample average of the cost is a difficult optimization problem. As an alternative, we propose the optimization of a certain convex loss function φ, analogous to the hinge loss used in support vector machines (SVMs). Its convexity ensures that the sample average of this surrogate loss can be efficiently minimized. We study its statistical properties. We show that minimizing the expected surrogate loss—the φ-risk—also minimizes the risk. We also study the rate at which the φ-risk approaches its minimum value. We show that fast rates are possible when the conditional probability P(Y=1|X) is unlikely to be close to certain critical values.
Resumo:
The purpose of this conceptual paper is to address the lack of consistent means through which strategies are identified and discussed across theoretical perspectives in the field of business strategy. A standardised referencing system is offered to codify the means by which strategies can be identified, from which new business services and information systems may be derived. This taxonomy was developed using qualitative content analysis study of government agencies’ strategic plans. This taxonomy is useful for identifying strategy formation and determining gaps and opportunities. Managers will benefit from a more transparent strategic design process that reduces ambiguity, aids in identifying and correcting gaps in strategy formulation, and fosters enhanced strategic analysis. Key benefits to academics are the improved dialogue in strategic management field and suggest that progress in the field requires that fundamentals of strategy formulation and classification be considered more carefully. Finally, the formalization of strategy can lead to the clear identification of new business services, which inform ICT investment decisions and shared service prioritisation.