375 resultados para MULTI-RELATIONAL DATA MINING


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intelligent software agents are promising in improving the effectiveness of e-marketplaces for e-commerce. Although a large amount of research has been conducted to develop negotiation protocols and mechanisms for e-marketplaces, existing negotiation mechanisms are weak in dealing with complex and dynamic negotiation spaces often found in e-commerce. This paper illustrates a novel knowledge discovery method and a probabilistic negotiation decision making mechanism to improve the performance of negotiation agents. Our preliminary experiments show that the probabilistic negotiation agents empowered by knowledge discovery mechanisms are more effective and efficient than the Pareto optimal negotiation agents in simulated e-marketplaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the years, people have often held the hypothesis that negative feedback should be very useful for largely improving the performance of information filtering systems; however, we have not obtained very effective models to support this hypothesis. This paper, proposes an effective model that use negative relevance feedback based on a pattern mining approach to improve extracted features. This study focuses on two main issues of using negative relevance feedback: the selection of constructive negative examples to reduce the space of negative examples; and the revision of existing features based on the selected negative examples. The former selects some offender documents, where offender documents are negative documents that are most likely to be classified in the positive group. The later groups the extracted features into three groups: the positive specific category, general category and negative specific category to easily update the weight. An iterative algorithm is also proposed to implement this approach on RCV1 data collections, and substantial experiments show that the proposed approach achieves encouraging performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Random Indexing K-tree is the combination of two algorithms suited for large scale document clustering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article explores two matrix methods to induce the ``shades of meaning" (SoM) of a word. A matrix representation of a word is computed from a corpus of traces based on the given word. Non-negative Matrix Factorisation (NMF) and Singular Value Decomposition (SVD) compute a set of vectors corresponding to a potential shade of meaning. The two methods were evaluated based on loss of conditional entropy with respect to two sets of manually tagged data. One set reflects concepts generally appearing in text, and the second set comprises words used for investigations into word sense disambiguation. Results show that for NMF consistently outperforms SVD for inducing both SoM of general concepts as well as word senses. The problem of inducing the shades of meaning of a word is more subtle than that of word sense induction and hence relevant to thematic analysis of opinion where nuances of opinion can arise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We argue that web service discovery technology should help the user navigate a complex problem space by providing suggestions for services which they may not be able to formulate themselves as (s)he lacks the epistemic resources to do so. Free text documents in service environments provide an untapped source of information for augmenting the epistemic state of the user and hence their ability to search effectively for services. A quantitative approach to semantic knowledge representation is adopted in the form of semantic space models computed from these free text documents. Knowledge of the user’s agenda is promoted by associational inferences computed from the semantic space. The inferences are suggestive and aim to promote human abductive reasoning to guide the user from fuzzy search goals into a better understanding of the problem space surrounding the given agenda. Experimental results are discussed based on a complex and realistic planning activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel Hybrid Clustering approach for XML documents (HCX) that first determines the structural similarity in the form of frequent subtrees and then uses these frequent subtrees to represent the constrained content of the XML documents in order to determine the content similarity. The empirical analysis reveals that the proposed method is scalable and accurate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Network-based Intrusion Detection Systems (NIDSs) analyse network traffic to detect instances of malicious activity. Typically, this is only possible when the network traffic is accessible for analysis. With the growing use of Virtual Private Networks (VPNs) that encrypt network traffic, the NIDS can no longer access this crucial audit data. In this paper, we present an implementation and evaluation of our approach proposed in Goh et al. (2009). It is based on Shamir's secret-sharing scheme and allows a NIDS to function normally in a VPN without any modifications and without compromising the confidentiality afforded by the VPN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method of improving the security of biometric templates which satisfies desirable properties such as (a) irreversibility of the template, (b) revocability and assignment of a new template to the same biometric input, (c) matching in the secure transformed domain is presented. It makes use of an iterative procedure based on the bispectrum that serves as an irreversible transformation for biometric features because signal phase is discarded each iteration. Unlike the usual hash function, this transformation preserves closeness in the transformed domain for similar biometric inputs. A number of such templates can be generated from the same input. These properties are illustrated using synthetic data and applied to images from the FRGC 3D database with Gabor features. Verification can be successfully performed using these secure templates with an EER of 5.85%

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artificial neural networks (ANN) have demonstrated good predictive performance in a wide range of applications. They are, however, not considered sufficient for knowledge representation because of their inability to represent the reasoning process succinctly. This paper proposes a novel methodology Gyan that represents the knowledge of a trained network in the form of restricted first-order predicate rules. The empirical results demonstrate that an equivalent symbolic interpretation in the form of rules with predicates, terms and variables can be derived describing the overall behaviour of the trained ANN with improved comprehensibility while maintaining the accuracy and fidelity of the propositional rules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we discuss our participation to the INEX 2008 Link-the-Wiki track. We utilized a sliding window based algorithm to extract the frequent terms and phrases. Using the extracted phrases and term as descriptive vectors, the anchors and relevant links (both incoming and outgoing) are recognized efficiently.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Thai written language is one of the languages that does not have word boundaries. In order to discover the meaning of the document, all texts must be separated into syllables, words, sentences, and paragraphs. This paper develops a novel method to segment the Thai text by combining a non-dictionary based technique with a dictionary-based technique. This method first applies the Thai language grammar rules to the text for identifying syllables. The hidden Markov model is then used for merging possible syllables into words. The identified words are verified with a lexical dictionary and a decision tree is employed to discover the words unidentified by the lexical dictionary. Documents used in the litigation process of Thai court proceedings have been used in experiments. The results which are segmented words, obtained by the proposed method outperform the results obtained by other existing methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we classify, review, and experimentally compare major methods that are exploited in the definition, adoption, and utilization of element similarity measures in the context of XML schema matching. We aim at presenting a unified view which is useful when developing a new element similarity measure, when implementing an XML schema matching component, when using an XML schema matching system, and when comparing XML schema matching systems.

Relevância:

100.00% 100.00%

Publicador: