216 resultados para INFRARED ACTION SPECTROSCOPY


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Raman spectroscopy complimented with infrared spectroscopy has been used to study the rare earth based mineral huanghoite with possible formula given as BaCe(CO3)2F and compared with the Raman spectra of a series of selected natural halogenated carbonates from different origins including bastnasite, parisite and northupite. The Raman spectrum of huanghoite displays three bands are at 1072, 1084 and 1091 cm−1 attributed to the symmetric stretching vibration. The observation of three symmetric stretching vibrations is very unusual. The position of symmetric stretching vibration varies with mineral composition. Infrared spectroscopy of huanghoite show bands at 1319, 1382, 1422 and 1470 cm−1. No Raman bands of huanghoite were observed in these positions. Raman spectra of bastnasite, parisite and northupite show a single band at 1433, 1420 and 1554 cm−1 assigned to the ν3 (CO3)2− antisymmetric stretching mode. The observation of additional Raman bands for the ν3 modes for some halogenated carbonates is significant in that it shows distortion of the carbonate anion in the mineral structure. Four Raman bands for huanghoite are observed at 687, 704, 718 and 730 cm−1and assigned to the (CO3)2− ν2 bending modes. Raman bands are observed for huanghoite at around 627 cm−1 and are assigned to the (CO3)2− ν4 bending modes. Raman bands are observed for the carbonate ν4 in phase bending modes at 722 cm−1 for bastnasite, 736 and 684 cm−1 for parisite, 714 cm−1 for northupite. Raman bands for huanghoite observed at 3259, 3484 and 3589 cm−1 are attributed to water stretching bands. Multiple bands are observed in the OH stretching region for bastnasite and parisite indicating the presence of water and OH units in their mineral structure. Vibrational spectroscopy enables new information on the structure of huanghoite to be assessed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a large number of boron containing minerals with water and/or hydroxyl units of which pinnoite MgB2O(OH)6 is one. Some discussion about the molecular structure of pinnoite exists in the literature. Whether water is involved in the structure is ill-determined. The molecular structure of pinnoite has been assessed by the combination of Raman and infrared spectroscopy. The Raman spectrum is characterized by an intense band at 900 cm−1 assigned to the BO stretching vibrational mode. A series of bands in the 1000–1320 cm−1 spectral range are attributed to BO antisymmetric stretching modes and in-plane bending modes. The infrared spectrum shows complexity in this spectral range. Multiple Raman OH stretching vibrations are found at 3179, 3399, 3554 and 3579 cm−1. The infrared spectrum shows a series of overlapping bands with bands identified at 3123, 3202, 3299, 3414, 3513 and 3594 cm−1. By using a Libowitzky type function, hydrogen bond distances were calculated. Two types of hydrogen bonds were identified based upon the hydrogen bond distance. It is important to understand the structure of pinnoite in order to form nanomaterials based upon the pinnoite structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molecular structure of the arsenate mineral ceruleite has been assessed using a combination of Raman and infrared spectroscopy. The most intense band observed at 903 cm-1 is assigned to the (AsO4)3- symmetric stretching vibrational mode. The infrared spectrum shows intense bands at 787, 827 and 886 cm-1, ascribed to the triply degenerate m3 antisymmetric stretching vibration. Raman bands observed at 373, 400, 417 and 430 cm-1 are attributed to the m2 vibrational mode. Three broad bands for ceruleite found at 3056, 3198 and 3384 cm-1 are assigned to water OH stretching bands. By using a Libowitzky empirical equation, hydrogen bond distances of 2.65 and 2.75 Å are calculated. Vibrational spectra enable the molecular structure of the ceruleite mineral to be determined and whilst similarities exist in the spectral patterns with the roselite mineral group, sufficient differences exist to be able to determine the identification of the minerals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural single-crystal specimens of the herderite-hydroxylherderite series from Brazil, with general formula CaBePO4(F,OH), were investigated by electron microprobe, Raman, infrared and near-infrared spectroscopies. The minerals occur as secondary products in granitic pegmatites. Herderite and hydroxylherderite minerals show extensive solid solution formation. The Raman spectra of hydroxylherderite are characterized by bands at around 985 and 998 cm-1, assigned to ν1 symmetric stretching mode of the HOPO33- and PO43- units. Raman bands at around 1085, 1128 and 1138 cm-1 are attributed to both the HOP and PO antisymmetric stretching vibrations. The set of Raman bands observed at 563, 568, 577, 598, 616 and 633 cm-1 are assigned to the ν4 out of plane bending modes of the PO4 and H2PO4 units. The OH Raman stretching vibrations of hydroxylherderite were observed ranging from 3626 cm-1 to 3609 cm-1. The infrared stretching vibrations of hydroxylherderites were observed between 3606 cm-1 and 3599 cm-1. By using a Libowitzky type function, hydrogen bond distances based upon the OH stretching bands were calculated. Characteristic NIR bands at around 6961 and 7054 cm-1 were assigned to the first overtone of the fundamental, whilst NIR bands at 10194 and 10329 cm-1 are assigned to the second overtone of the fundamental OH stretching vibration. Insight into the structure of the herderite-hydroxylherderite series is assessed by vibrational spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this report, a detailed FTIR fitting analysis was used to recognize Mg, Zn and Al homogeneous distribution in MgxZnyAl(x+y)/2-Layered double hydroxide (LDH) hydroxyl layer. In detail, OH-Mg2Al:OH-Mg3 ratios decreased from 95.2:4.8 (MIR) and 94.2:5.8 (NIR) to 58.9:41.1 (MIR) and 61.8:38.2 (NIR), when Mg:Al increased from 2.2:1.0 to 4.1:1.0 in MgAl-LDHs. These fitting results were similar with theoretical calculations of 94.3:5.7 and 59.0:41.0. In a further analysis of MgxZnyAl(x+y)/2-LDHs, OH bonded Zn2Mg, Zn2Al, MgZnAl, Mg2Al and Mg2Zn peaks were identified at 3420, 3430, 3445–3450, 3454 and 3545 cm-1, respectively. With the decrease of Mg:Zn from 3:1 to 1:3, metal-hydroxyl bands changed from OH-Mg2Al and MgZnAl (with a ratio of 49.4:50.6) to OH-MgZnAl and Zn2Al (with a ratio of 55.0:45.0). They were also similar with theoretical calculations of 47.6:52.4 and 54.6:45.4. As a result, these results show that there is an ordered cation distribution in MgxZnyAl(x+y)/2-LDH, and FTIR is feasible in recognizing this structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we have investigated on the natural wendwilsonite mineral with the formulae Ca2(Mg,Co)(AsO4)2⋅2(H2O). Raman spectroscopy complimented with infrared spectroscopy has been used to determine the molecular structure of the wendwilsonite arsenate mineral. A comparison is made with the roselite mineral group with formula Ca2B(AsO4)2⋅2H2O (where B may be Co, Fe2+, Mg, Mn, Ni, Zn). The Raman spectra of the arsenate related to tetrahedral arsenate clusters with stretching region shows strong differences between that of wendwilsonite and the roselite arsenate minerals which is attributed to the cation substitution for calcium in the structure. The Raman arsenate (AsO4)3− stretching region shows strong differences between that of wendwilsonite and the roselite arsenate minerals which is attributed to the cation substitution for calcium in the structure. In the infrared spectra complexity exists of multiple to tetrahedral (AsO4)3− clusters with antisymmetric stretching vibrations observed indicating a reduction of the tetrahedral symmetry. This loss of degeneracy is also reflected in the bending modes. Strong Raman bands around 450 cm−1 are assigned to ν4 bending modes. Multiple bands in the 350–300 cm−1 region assigned to ν2 bending modes provide evidence of symmetry reduction of the arsenate anion. Three broad bands for wendwilsonite found at 3332, 3119 and 3001 cm−1 are assigned to OH stretching bands. By using a Libowitzky empirical equation, hydrogen bond distances of 2.65 and 2.75 Å are estimated. Vibrational spectra enable the molecular structure of the wendwilsonite mineral to be determined and whilst similarities exist in the spectral patterns with the roselite mineral group, sufficient differences exist to be able to determine the identification of the minerals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gaudefroyite Ca4Mn3+3-x(BO3)3(CO3)(O,OH)3 is an unusual mineral containing both borate and carbonate groups and is found in the oxidation zones of manganese minerals, and it is black in color. Vibrational spectroscopy has been used to explore the molecular structure of gaudefroyite. Gaudefroyite crystals are short dipyramidal or prismatic with prominent pyramidal terminations, to 5 cm. Two very sharp Raman bands at 927 and 1076 cm-1are assigned to trigonal borate and carbonate respectively. Broad Raman bands at 1194, 1219 and 1281 cm-1 are attributed to BOH in-plane bending modes. Raman bands at 649 and 670 cm-1 are assigned to the bending modes of trigonal and tetrahedral boron. Infrared spectroscopy supports these band assignments. Raman bands in the OH stretching region are of a low intensity. The combination of Raman and infrared spectroscopy enables the assessment of the molecular structure of gaudefroyite to be made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chambersite is a manganese borate mineral with formula: MnB7O13Cl and occurs as colorless crystals in the monoclinic pyramidal crystal system. Raman bands at 902, 920, 942 and 963 cm-1 are assigned to the BO stretching vibration of the B7O13 units. Raman bands at 1027, 1045, 1056, 1075 and 1091 cm-1 are attributed to the BCl in-plane bending modes. The intense infrared band at 866 cm-1 is assigned to the trigonal borate stretching modes. The Raman band at 660 cm-1 together with bands at 597, 642 679, 705 and 721 cm-1 are assigned to the trigonal and tetrahedral borate bending modes. The molecular structure of a natural chambersite has been assessed using vibrational spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the mineral olmiite CaMn\[SiO3(OH)](OH) which forms a series with its calcium analogue poldevaartite CaCa\[SiO3(OH)](OH) using a range of techniques including scanning electron microscopy, thermogravimetric analysis , Raman and infrared spectroscopy. Chemical analysis shows the mineral is pure and contains only calcium and manganese in the formula. Thermogravimetric analysis proves the mineral decomposes at 502°C with a mass loss of 8.8% compared with the theoretical mass loss of 8.737%. A strong Raman band at 853 cm-1 is assigned to the SiO stretching vibration of the SiO3(OH) units. Two Raman bands at 914 and 953 cm-1 are attributed to the antisymmetric vibrations.Two intense Raman bands observed at 3511 and 3550 cm-1 are assigned to the OH stretching vibration of the SiO3(OH) units. The observation of multiple OH bands supports the concept of the non-equivalence of the OH units. Vibrational spectroscopy enables a detailed assessment of the molecular structure of olmiite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the mineral hydroboracite CaMg[B3O4(OH)3]2∙3H2O using electron microscopy and vibrational spectroscopy. Both tetrahedral and trigonal boron units are observed. The nominal resolution of the Raman spectrometer is of the order of 2 cm-1 and as such is sufficient enough to identify separate bands for the stretching bands of the two boron isotopes. The Raman band at 1039 cm-1 is assigned to BO stretching vibration. Raman bands at 1144, 1157, 1229, 1318 cm-1 are attributed to the BOH in-plane bending modes. Raman bands at 825 and 925 cm-1 are attributed to the antisymmetric stretching modes of tetrahedral boron. The sharp Raman peak at 925 cm-1 is from the 11-B component such a mode, then it should have a smaller 10-B satellite near (1.03)x(925) = 952 cm-1, and indeed a small peak at 955 is observed. Four sharp Raman bands observed at 3371, 3507, 3563 and 3632 cm-1 are attributed to the stretching vibrations of hydroxyl units. The broad Raman bands at 3076, 3138, 3255, 3384 and 3551 cm-1 are assigned to water stretching vibrations. Infrared bands at 3367, 3505, 3559 and 3631 cm-1are assigned to the stretching vibration of the hydroxyl units. Broad infrared bands at 3072 and 3254 cm-1 are assigned to water stretching vibrations. Infrared bands at 1318, 1349, 1371, 1383 cm-1 are assigned to the antisymmetric stretching vibrations of trigonal boron

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tunellite is a strontium borate mineral with formula: SrB6O9(OH)2∙3(H2O) and occurs as colorless crystals in the monoclinic pyramidal crystal system. An intense Raman band at 994 cm-1 was assigned to the BO stretching vibration of the B2O3 units. Raman bands at 1043, 1063, 1082 and 1113 cm-1 are attributed to the in-plane bending vibrations of trigonal boron. Sharp Raman bands observed at 464, 480, 523, 568 and 639 cm-1 are simply defined as trigonal and tetrahedral borate bending modes. The Raman spectrum clearly shows intense Raman bands at 3567 and 3614 cm-1, attributed to OH units. The molecular structure of a natural tunellite has been assessed by using vibrational spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The multianion mineral gartrellite PbCu(Fe3+,Cu)(AsO4)2(OH,H2O)2 has been studied by a combination of Raman and infrared spectroscopy. The molecular structure of gartrellite is assessed. Gartrellite is one of the tsumcorite mineral group based upon arsenate and/or sulphate anions. Crystal symmetry is either triclinic in the case of an ordered occupation of two cationic sites, triclinic due to ordering of the H bonds in the case of species with two water molecules per formula unit, or monoclinic in the other cases. Characteristic Raman spectra of the mineral gartrellite enable the assignment of the bands to specific vibrational modes. These spectra are related to the structure of gartrellite. The position of the hydroxyl and water stretching vibrations are related to the strength of the hydrogen bond formed between the OH unit and the AsO3/4 anion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maxwellite NaFe3+(AsO4)F is an arsenate mineral containing fluoride and forms a continuous series with tilasite CaMg(AsO4)F. Both maxwellite and tilasite form a continuous series with durangite NaAl3+(AsO4)-F. We have used the combination of scanning electron microscopy with EDS and vibrational spectroscopy to chemically analyse the mineral maxwellite and make an assessment of the molecular structure. Chemical analysis shows that maxwellite is composed of Fe, Na and Ca with minor amounts of Mn and Al. Raman bands for tilasite at 851 and 831 cm�1 are assigned to the Raman active m1 symmetric stretching vibration (A1) and the Raman active triply degenerate m3 antisymmetric stretching vibration (F2). The Raman band of maxwellite at 871 cm�1 is assigned to the m1 symmetric stretching vibration and the Raman band at 812 cm�1 is assigned to the m3 antisymmetric stretching vibration. The intense Raman band of tilasite at 467 cm�1 is assigned to the Raman active triply degenerate m4 bending vibration (F2). Raman band at 331 cm�1 for tilasite is assigned to the Raman active doubly degenerate m2 symmetric bending vibration (E). Both Raman and infrared spectroscopy do not identify any bands in the hydroxyl stretching region as is expected.