427 resultados para Human Movement
Resumo:
Evasive change-of-direction manoeuvres (agility skills) are a fundamental ability in rugby union. In this study, we explored the attributes of agility skill execution as they relate to effective attacking strategies in rugby union. Seven Super 14 games were coded using variables that assessed team patterns and individual movement characteristics during attacking ball carries. The results indicated that tackle-breaks are a key determinant of try-scoring ability and team success in rugby union. The ability of the attacking ball carrier to receive the ball at high speed with at least two body lengths from the defence line against an isolated defender promoted tackle-breaks. Furthermore, the execution of a side-step evasive manoeuvre at a change of direction angle of 20–60° and a distance of one to two body lengths from the defence, and then straightening the running line following the initial direction change at an angle of 20–60°, was associated with tackle-breaks. This study provides critical insight regarding the attributes of agility skill execution that are associated with effective ball carries in rugby union.
Resumo:
The purpose of the present study was to compare the effects of cold water immersion (CWI) and active recovery (ACT) on resting limb blood flow, rectal temperature and repeated cycling performance in the heat. Ten subjects completed two testing sessions separated by 1 week; each trial consisted of an initial all-out 35-min exercise bout, one of two 15-min recovery interventions (randomised: CWI or ACT), followed by a 40-min passive recovery period before repeating the 35-min exercise bout. Performance was measured as the change in total work completed during the exercise bouts. Resting limb blood flow, heart rate, rectal temperature and blood lactate were recorded throughout the testing sessions. There was a significant decline in performance after ACT (mean (SD) −1.81% (1.05%)) compared with CWI where performance remained unchanged (0.10% (0.71%)). Rectal temperature was reduced after CWI (36.8°C (1.0°C)) compared with ACT (38.3°C (0.4°C)), as was blood flow to the arms (CWI 3.64 (1.47) ml/100 ml/min; ACT 16.85 (3.57) ml/100 ml/min) and legs (CW 4.83 (2.49) ml/100 ml/min; ACT 4.83 (2.49) ml/100 ml/min). Leg blood flow at the end of the second exercise bout was not different between the active (15.25 (4.33) ml/100 ml/min) and cold trials (14.99 (4.96) ml/100 ml/min), whereas rectal temperature (CWI 38.1°C (0.3°C); ACT 38.8°C (0.2°C)) and arm blood flow (CWI 20.55 (3.78) ml/100 ml/min; ACT 23.83 (5.32) ml/100 ml/min) remained depressed until the end of the cold trial. These findings indicate that CWI is an effective intervention for maintaining repeat cycling performance in the heat and this performance benefit is associated with alterations in core temperature and limb blood flow.
Resumo:
This study investigated the Kinaesthetic Fusion Effect (KFE) first described by Craske and Kenny in 1981. In Experiment 1 the study did not replicate these findings following a change in the reporting method used by participants. Participants did not perceive any reduction in the sagittal separation of a button pressed by the index finger of one arm and a probe touching the other, following repeated exposure to the tactile stimuli present on both unseen arms. This study’s failure to replicate the widely-cited KFE as described by Craske et al. (1984) suggests that it may be contingent on several aspects of visual information, especially the availability of a specific visual reference, the role of instructions regarding gaze direction, and the potential use of a line of sight strategy when referring felt positions to an interposed surface. In addition, a foreshortening effect was found; this may result from a line-of-sight judgment and represent a feature of the reporting method used. Finally, this research will benefit future studies that require participants to report the perceived locations of the unseen limbs. Experiment 2 investigated the KFE when the visual reference was removed and participants made reports of touched position, blindfolded. A number of interesting outcomes arose from this change and may provide clarification to the phenomena.
Resumo:
A new accelerometer, the Kenz Lifecorder EX (LC; Suzuken Co. Ltd, Nagoya, Japan), offers promise as a feasible monitor alternative to the commonly used Actigraph (AG: Actigraph LLC, Fort Walton Beach, FL). Purpose: This study compared the LC and AG accelerometers and the Yamax SW-200 pedometer (DW) under free-living conditions with regard to children's steps taken and time in light-intensity physical activity (PA) and moderate to vigorous PA (MVPA). Methods: Participants (N = 31, age = 10.2 ± 0.4 yr) wore LC, AG, and DW monitors from arrival at school (7:45 a.m.) until they went to bed. Time in light and MVPA intensities were calculated using two separate intensity classifications for the LC (LC_4 and LC_5) and four classifications for the AG (AG_Treuth, AG_Puyau, AG_Trost, and AG_Freedson). Both accelerometers provided steps as outputs. DW steps were self-recorded. Repeated-measures ANOVA was used to assess overlapping monitor outputs. Results: There was no difference between DW and LC steps (Δ = 200 steps), but a nonsignificant trend was observed in the pairwise comparison between DW and AG steps (Δ = 1001 steps, P = 0.058). AG detected significantly greater steps than the LC (Δ = 801 steps, P = 0.001). Estimates of light-intensity activity minutes ranged from a low of 75.6 ± 18.4 min (LC_4) to a high of 309 ± 69.2 min (AG_Treuth). Estimates of MVPA minutes ranged from a low of 25.9 ± 9.4 min (LC_5) to a high of 112.2 ± 34.5 min (AG_Freedson). No significant differences in MVPA were seen between LC_5 and AG_Treuth (Δ = 4.9 min) or AG_Puyau (Δ = 1.7 min). Conclusion: The LC detected a comparable number of steps as the DW but significantly fewer steps than the AG in children. Current results indicate that the LC_5 and either AG_Treuth or AG_Puyau intensity derivations provide similar mean estimates of time in MVPA during-free living activity in 10-yr-old children.
Resumo:
Objective: To critically appraise the Biodex System 4 isokinetic dynamometer for strength assessment of children. Methods: Appraisal was based on experiences from two independent laboratories involving testing of 213 children. Issues were recorded and the manufacturer was consulted regarding appropriate solutions. Results: The dynamometer had insufficient height adjustment for alignment of the knee for some children, requiring the construction of padding to better fit the child within the dynamometer. Potential for entrapment of the non-testing leg was evident in the passive and eccentric modes and a leg bracket restraint was constructed. Automated gravity correction did not operate when protocols were linked or data was exported to an external device. Conclusions: Limitations were noted, some of which were applicable to knee strength testing in general and others which were specific to use with children. However, most of these obstacles could be overcome, making the Biodex System 4 suitable for assessment of knee strength in children.
Resumo:
Muscle physiologists often describe fatigue simply as a decline of muscle force and infer this causes an athlete to slow down. In contrast, exercise scientists describe fatigue during sport competition more holistically as an exercise-induced impairment of performance. The aim of this review is to reconcile the different views by evaluating the many performance symptoms/measures and mechanisms of fatigue. We describe how fatigue is assessed with muscle, exercise or competition performance measures. Muscle performance (single muscle test measures) declines due to peripheral fatigue (reduced muscle cell force) and/or central fatigue (reduced motor drive from the CNS). Peak muscle force seldom falls by >30% during sport but is often exacerbated during electrical stimulation and laboratory exercise tasks. Exercise performance (whole-body exercise test measures) reveals impaired physical/technical abilities and subjective fatigue sensations. Exercise intensity is initially sustained by recruitment of new motor units and help from synergistic muscles before it declines. Technique/motor skill execution deviates as exercise proceeds to maintain outcomes before they deteriorate, e.g. reduced accuracy or velocity. The sensation of fatigue incorporates an elevated rating of perceived exertion (RPE) during submaximal tasks, due to a combination of peripheral and higher CNS inputs. Competition performance (sport symptoms) is affected more by decision-making and psychological aspects, since there are opponents and a greater importance on the result. Laboratory based decision making is generally faster or unimpaired. Motivation, self-efficacy and anxiety can change during exercise to modify RPE and, hence, alter physical performance. Symptoms of fatigue during racing, team-game or racquet sports are largely anecdotal, but sometimes assessed with time-motion analysis. Fatigue during brief all-out racing is described biomechanically as a decline of peak velocity, along with altered kinematic components. Longer sport events involve pacing strategies, central and peripheral fatigue contributions and elevated RPE. During match play, the work rate can decline late in a match (or tournament) and/or transiently after intense exercise bursts. Repeated sprint ability, agility and leg strength become slightly impaired. Technique outcomes, such as velocity and accuracy for throwing, passing, hitting and kicking, can deteriorate. Physical and subjective changes are both less severe in real rather than simulated sport activities. Little objective evidence exists to support exercise-induced mental lapses during sport. A model depicting mind-body interactions during sport competition shows that the RPE centre-motor cortex-working muscle sequence drives overall performance levels and, hence, fatigue symptoms. The sporting outputs from this sequence can be modulated by interactions with muscle afferent and circulatory feedback, psychological and decision-making inputs. Importantly, compensatory processes exist at many levels to protect against performance decrements. Small changes of putative fatigue factors can also be protective. We show that individual fatigue factors including diminished carbohydrate availability, elevated serotonin, hypoxia, acidosis, hyperkalaemia, hyperthermia, dehydration and reactive oxygen species, each contribute to several fatigue symptoms. Thus, multiple symptoms of fatigue can occur simultaneously and the underlying mechanisms overlap and interact. Based on this understanding, we reinforce the proposal that fatigue is best described globally as an exercise-induced decline of performance as this is inclusive of all viewpoints.
Resumo:
Egon Brunswik proposed the concept of “representative design” for psychological experimentation, which has historically been overlooked or confused with another of Brunswik’s terms, ecological validity. In this article, we reiterate the distinction between these two important concepts and highlight the relevance of the term representative design for sports psychology, practice, and experimental design. We draw links with ideas on learning design in the constraints-led approach to motor learning and nonlinear pedagogy. We propose the adoption of a new term, representative learning design, to help sport scientists, experimental psychologists, and pedagogues recognize the potential application of Brunswik’s original concepts, and to ensure functionality and action fidelity in training and learning environments.
Resumo:
Hamstring strain injuries (HSIs) are common in a number of sports and incidence rates have not declined in recent times. Additionally, the high rate of recurrent injuries suggests that our current understanding of HSI and re-injury risk is incomplete. Whilst the multifactoral nature of HSIs is agreed upon by many, often individual risk factors and/or causes of injury are examined in isolation. This review aims to bring together the causes, risk factors and interventions associated with HSIs to better understand why HSIs are so prevalent. Running is often identified as the primary activity type for HSIs and given the high eccentric forces and moderate muscle strain placed on the hamstrings during running these factors are considered to be part of the aetiology of HSIs. However, the exact causes of HSIs remain unknown and whilst eccentric contraction and muscle strain purportedly play a role, accumulated muscle damage and/or a single injurious event may also contribute. Potentially, all of these factors interact to varying degrees depending on the injurious activity type (i.e. running, kicking). Furthermore, anatomical factors, such as the biarticular organization, the dual innervations of biceps femoris (BF), fibre type distribution, muscle architecture and the degree of anterior pelvic tilt, have all been implicated. Each of these variables impact upon HSI risk via a number of different mechanisms that include increasing hamstring muscle strain and altering the susceptibility of the hamstrings to muscle damage. Reported risk factors for HSIs include age, previous injury, ethnicity, strength imbalances, flexibility and fatigue. Of these, little is known, definitively, about why previous injury increases the risk of future HSIs. Nevertheless, interventions put in place to reduce the incidence of HSIs by addressing modifiable risk factors have focused primarily on increasing eccentric strength, correcting strength imbalances and improving flexibility. The response to these intervention programmes has been mixed with varied levels of success reported. A conceptual framework is presented suggesting that neuromuscular inhibition following HSIs may impede the rehabilitation process and subsequently lead to maladaptation of hamstring muscle structure and function, including preferentially eccentric weakness, atrophy of the previously injured muscles and alterations in the angle of peak knee flexor torque. This remains an area for future research and practitioners need to remain aware of the multifactoral nature of HSIs if injury rates are to decline.
Resumo:
Anthropometry is a simple and cost-efficient method for the assessment of body composition. However prediction equations to estimate body composition using anthropometry should be ‘population-specific’. Most popular body composition prediction equations for Japanese females were proposed more than 40 years ago and there is some concern regarding their usefulness in Japanese females living today. The aim of this study was to compare percentage body fat (%BF) estimated from anthropometry and dual energy x-ray absorptiometry (DXA) to examine the applicability of commonly used prediction equations in young Japanese females. Body composition of 139 Japanese females aged between 18 and 27 years of age (BMI range: 15.1–29.1 kg/m2) was measured using whole-body DXA (Lunar DPX-LIQ) scans. From anthropometric measurements %BF was estimated using four equations developed from Japanese females. The results showed that the traditionally employed prediction equations for anthropometry significantly (p<0.01) underestimate %BF of young Japanese females and therefore are not valid for the precise estimation of body composition. New %BF prediction equations were proposed from the DXA and anthropometry results. Application of the proposed equations may assist in more accurate assessment of body fatness in Japanese females living today.
Resumo:
Physical activity is important following breast cancer. Trials of non-face-to-face interventions are needed to assist in reaching women living outside major metropolitan areas. This study seeks to evaluate the feasibility and effectiveness of a telephone-delivered, mixed aerobic and resistance exercise intervention for non-urban Australian women with breast cancer. A randomized controlled trial comparing an 8-month intervention delivered by exercise physiologists (n = 73) to usual care (n = 70). Sixty-one percent recruitment rate and 96% retention at 12 months; 79% of women in the intervention group received at least 75% of calls; odds (OR, 95% CI) of meeting intervention targets favored the intervention group for resistance training (OR 3.2; 1.2, 8.9) and aerobic (OR 2.1; 0.8, 5.5) activity. Given the limited availability of physical activity programs for non-urban women with breast cancer, results provide strong support for feasibility and modest support for the efficacy of telephone-delivered interventions.
Resumo:
The aim of this study was to determine whether spatiotemporal interactions between footballers and the ball in 1 vs. 1 sub-phases are influenced by their proximity to the goal area. Twelve participants (age 15.3 ± 0.5 years) performed as attackers and defenders in 1 vs. 1 dyads across three field positions: (a) attacking the goal, (b) in midfield, and (c) advancing away from the goal area. In each position, the dribbler was required to move beyond an immediate defender with the ball towards the opposition goal. Interactions of attacker-defender dyads were filmed with player and ball displacement trajectories digitized using manual tracking software. One-way repeated measures analysis of variance was used to examine differences in mean defender-to-ball distance after this value had stabilized. Maximum attacker-to-ball distance was also compared as a function of proximity-to-goal. Significant differences were observed for defender-to-ball distance between locations (a) and (c) at the moment when the defender-to-ball distance had stabilized (a: 1.69 ± 0.64 m; c: 1.15 ± 0.59 m; P < 0.05). Findings indicate that proximity-to-goal influenced the performance of players, particularly when attacking or advancing away from goal areas, providing implications for training design in football. In this study, the task constraints of football revealed subtly different player interactions than observed in previous studies of dyadic systems in basketball and rugby union.
Resumo:
The subtalar joint has been presumed to account for most of the pathologic motion in the foot and ankle, but research has shown that motion at other foot joints is greater than traditionally expected. Although recent research demonstrates the complexity of the kinematic variables in the foot and ankle, it still fails to expand our knowledge of the role of the musculotendinous structures in the biomechanics of the foot and ankle and how this is affected by in-shoe orthoses. The aim of this study was to simulate the effect of in-shoe foot orthoses by manipulation of the ground reaction force (GRF) components and centre of pressure (CoP) to demonstrate the resultant effect on muscle force in selected muscles during both the rearfoot loading response and stance phase of the gait cycle. We found that any medial wedge increases ankle joint load during gait cycle, while a lateral wedge decreases the joint load during the stance phase.
Resumo:
Nineteen studies met the inclusion criteria. A skin temperature reduction of 5–15 °C, in accordance with the recent PRICE (Protection, Rest, Ice, Compression and Elevation) guidelines, were achieved using cold air, ice massage, crushed ice, cryotherapy cuffs, ice pack, and cold water immersion. There is evidence supporting the use and effectiveness of thermal imaging in order to access skin temperature following the application of cryotherapy. Thermal imaging is a safe and non-invasive method of collecting skin temperature. Although further research is required, in terms of structuring specific guidelines and protocols, thermal imaging appears to be an accurate and reliable method of collecting skin temperature data following cryotherapy. Currently there is ambiguity regarding the optimal skin temperature reductions in a medical or sporting setting. However, this review highlights the ability of several different modalities of cryotherapy to reduce skin temperature.
Resumo:
The purpose of this study was to investigate the effects of whole-body cryotherapy (WBC) on proprioceptive function, muscle force recovery following eccentric muscle contractions and tympanic temperature (TTY). Thirty-six subjects were randomly assigned to a group receiving two 3-min treatments of −110 ± 3 °C or 15 ± 3 °C. Knee joint position sense (JPS), maximal voluntary isometric contraction (MVIC) of the knee extensors, force proprioception and TTY were recorded before, immediately after the exposure and again 15 min later. A convenience sample of 18 subjects also underwent an eccentric exercise protocol on their contralateral left leg 24 h before exposure. MVIC (left knee), peak power output (PPO) during a repeated sprint on a cycle ergometer and muscles soreness were measured pre-, 24, 48 and 72 h post-treatment. WBC reduced TTY, by 0.3 °C, when compared with the control group (P<0.001). However, JPS, MVIC or force proprioception was not affected. Similarly, WBC did not effect MVIC, PPO or muscle soreness following eccentric exercise. WBC, administered 24 h after eccentric exercise, is ineffective in alleviating muscle soreness or enhancing muscle force recovery. The results of this study also indicate no increased risk of proprioceptive-related injury following WBC.
Resumo:
Applying ice or other forms of topical cooling is a popular method of treating sports injuries. It is commonplace for athletes to return to competitive activity, shortly or immediately after the application of a cold treatment. In this article, we examine the effect of local tissue cooling on outcomes relating to functional performance and to discuss their relevance to the sporting environment. A computerized literature search, citation tracking and hand search was performed up to April, 2011. Eligible studies were trials involving healthy human participants, describing the effects of cooling on outcomes relating to functional performance. Two reviewers independently assessed the validity of included trials and calculated effect sizes. Thirty five trials met the inclusion criteria; all had a high risk of bias. The mean sample size was 19. Meta-analyses were not undertaken due to clinical heterogeneity. The majority of studies used cooling durations >20 minutes. Strength (peak torque/force) was reported by 25 studies with approximately 75% recording a decrease in strength immediately following cooling. There was evidence from six studies that cooling adversely affected speed, power and agility-based running tasks; two studies found this was negated with a short rewarming period. There was conflicting evidence on the effect of cooling on isolated muscular endurance. A small number of studies found that cooling decreased upper limb dexterity and accuracy. The current evidence base suggests that athletes will probably be at a performance disadvantage if they return to activity immediately after cooling. This is based on cooling for longer than 20 minutes, which may exceed the durations employed in some sporting environments. In addition, some of the reported changes were clinically small and may only be relevant in elite sport. Until better evidence is available, practitioners should use short cooling applications and/or undertake a progressive warm up prior to returning to play.