197 resultados para Hazardous materials.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rail track undergoes complex loading patterns under moving traffic conditions compared to roads due to its continued and discontinued multi-layered structure, including rail, sleepers, ballast layer, sub-ballast layer, and subgrade. Particle size distributions (PSDs) of ballast, subballast, and subgrade layers can be critical in cyclic plastic deformation of rail track under moving traffic on frequent track degradation of rail tracks, especially at bridge transition zones. Conventional test approaches: static shear and cyclic single-point load tests are however unable to replicate actual loading patterns of moving train. Multi-ring shear apparatus; a new type of torsional simple shear apparatus, which can reproduce moving traffic conditions, was used in this study to investigate influence of particle size distribution of rail track layers on cyclic plastic deformation. Three particle size distributions, using glass beads were examined under different loading patterns: cyclic sin-gle-point load, and cyclic moving wheel load to evaluate cyclic plastic deformation of rail track under different loading methods. The results of these tests suggest that particle size distributions of rail track structural layers have significant impacts on cyclic plastic deformation under moving train load. Further, the limitations in con-ventional test methods used in laboratories to estimate the plastic deformation of rail track materials lead to underestimate the plastic deformation of rail tracks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gravity based structure (GBS) with external Steel–Concrete–Steel (SCS) sandwich ice-resistant wall has been developed for the Arctic oil and gas drilling. This paper firstly reported the experimental studies on the mechanical properties of steel and concretes under Arctic low temperature. With the test data, design equations were developed to incorporate the influences of the low temperature on these mechanical properties. Two types of Arctic GBS structure with flower-conical SCS sandwich shell type and plate type of ice-resistant wall have been developed for the Arctic offshore structure. Besides the studies on the materials, two SCS sandwich prototype shells and plates were, respectively, prepared and tested under patch loading that simulated the localized ice-contact pressure. The structural behaviors of the SCS sandwich structure under patch loading were reported and discussions were made on the influences of different parameters on the structural behavior of the structure. Analytical models were developed to predict the punching shear resistances of the SCS sandwich structure through modifying the code provisions. The accuracies of the developed analytical models were checked through validations against 27 tests in the literature. Corresponding design procedures on resistances of SCS sandwich structure were recommended based on these discussions and validations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lithium-ion exchange rate capability of various commercial graphite materials are evaluated using galvanostatic charge/discharge cycling in a half-cell configuration over a wide range of C-rates (0.1 similar to 60C). The results confirm that graphite is capable of de-intercalating stored charge at high rates, but has a poor intercalating rate capability. Decreasing the graphite coating thickness leads to a limited rate performance improvement of the electrode. Reducing the graphite particle size shows enhanced C-rate capability but with increased irreversible capacity loss (ICL). It is demonstrated that the rate of intercalation of lithium-ions into the graphite is significantly limited compared with the corresponding rate of de-intercalation at high C-rates. For the successful utilisation of commercially available conventional graphite as a negative electrode in a lithium-ion capacitor (LIC), its intercalation rate capability needs to be improved or oversized to accommodate high charge rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amongst alternative energy sources, photovoltaics hold a considerable promise for it is a plentiful, easily accessible and renewable source of power. Yet, the overall cost of generating electricity using the most advanced silicon based solar cells remains high compared to both traditional and other renewable power generation approaches. Organic thin film photovoltaics are an emerging economically competitive photovoltaic technology that combines manufacturing adaptability, low-cost processing and a lightweight, flexible device end-product. At present, however, commercial use of organic photovoltaics is hindered by low conversion efficiency and poor overall stability of the devices. Encapsulation with high barrier performance materials and structures is one of the key ways to address these issues and improve device lifetime. This paper will briefly outline the current understanding of the major degradation mechanisms, their interrelation and the internal and external factors that initiate these processes. Then, the paper will provide an overview of currently available encapsulant materials, their utility in limiting chemical (water vapor and oxygen penetration) and mechanical degradation within individual layers and device as a whole, and potential drawbacks to their application in organic photovoltaic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic, natural, or composite, biomaterials occupy a key position in the management of disease and support continuous advancement of health care. Clinical utility of many permanent and biodegradable implants can be significantly improved via surface modification. Here, we discuss a novel polymer material developed from essential oil-based monoterpene alcohol using plasma polymerisation. The developed coatings are cytocompatible and limit adhesion and proliferation of a variety of pathogens. The coating can also be used to control degradation behaviour of resorbable materials, such as magnesium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This RIRDC publication reports the findings and recommendations of the RIRDC funded study, "Fabrication of Electronic Materials from Australian Essential Oils". This project was undertaken to facilitate an expansion of the Australian Essential Oils Industry through the development of novel applications in the Electronic and Bio-Materials Industries. The findings presented in this report will provide value broadly across the Australian Essential Oils Industry, and more particularly to the growers involved in the production of tea tree, lavender and other essential oils. Several essential oils, namely tea tree oil, sandalwood oil, eucalyptus oil, alpha-pinene, d-limonene, lavender oil (a separate PhD project) and five major components of tea tree oil were tested. With the exception of sandalwood oil, all oils investigated were successfully polymerised. Importantly, this project determined that it is possible to use an environmentally friendly, inexpensive process of polymerisation to fabricate materials from essential oils in a reproducible manner with properties required by the optics, electronics, protective coatings, and bio-material industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After more than twenty years of basic and applied research, the use of nanotechnology in the design and manufacture of nanoscale materials is rapidly increasing, particularly in commercial applications that span from electronics across renewable energy areas, and biomedical devices. Novel polymers are attracting significant attention for they promise to provide a low−cost high−performance alternative to existing materials. Furthermore, these polymers have the potential to overcome limitations imposed by currently available materials thus enabling the development of new technologies and applications that are currently beyond our reach. This work focuses on the development of a range of new low−cost environmentally−friendly polymer materials for applications in areas of organic (flexible) electronics, optics, and biomaterials. The choice of the monomer reflects the environmentally−conscious focus of this project. Terpinen−4−ol is a major constituent of Australian grown Melaleuca alternifolia (tea tree) oil, attributed with the oil's antimicrobial and anti−inflammatory properties. Plasma polymerisation was chosen as a deposition technique for it requires minimal use of harmful chemicals and produces no hazardous by−products. Polymer thin films were fabricated under varied process conditions to attain materials with distinct physico−chemical, optoelectrical, biological and degradation characteristics. The resultant materials, named polyterpenol, were extensively characterised using a number of well−accepted and novel techniques, and their fundamental properties were defined. Polyterpenol films were demonstrated to be hydrocarbon rich, with variable content of oxygen moieties, primarily in the form of hydroxyl and carboxyl functionalities. The level of preservation of original monomer functionality was shown to be strongly dependent on the deposition energy, with higher applied power increasing the molecular fragmentation and substrate temperature. Polyterpenol water contact angle contact angle increased from 62.7° for the 10 W samples to 76.3° for the films deposited at 100 W. Polymers were determined to resist solubilisation by water, due to the extensive intermolecular and intramolecular hydrogen bonds present, and other solvents commonly employed in electronics and biomedical processing. Independent of deposition power, the surface topography of the polymers was shown to be smooth (Rq <0.5 nm), uniform and defect free. Hardness of polyterpenol coatings increased from 0.33 GPa for 10 W to 0.51 GPa for 100 W (at 500 μN load). Coatings deposited at higher input RF powers showed less mechanical deformation during nanoscratch testing, with no considerable damage, cracking or delamination observed. Independent of the substrate, the quality of film adhesion improved with RF power, suggesting these coatings are likely to be more stable and less susceptible to wear. Independent of fabrication conditions, polyterpenol thin films were optically transparent, with refractive index approximating that of glass. Refractive index increased slightly with deposition power, from 1.54 (10 W) to 1.56 (100 W) at 500 nm. The optical band gap values declined with increasing power, from 2.95 eV to 2.64 eV, placing the material within the range for semiconductors. Introduction of iodine impurity reduced the band gap of polyterpenol, from 2.8 eV to 1.64 eV, by extending the density of states more into the visible region of the electromagnetic spectrum. Doping decreased the transparency and increased the refractive index from 1.54 to 1.70 (at 500 nm). At optical frequencies, the real part of permittivity (k) was determined to be between 2.34 and 2.65, indicating a potential low-k material. These permittivity values were confirmed at microwave frequencies, where permittivity increased with input RF energy – from 2.32 to 2.53 (at 10 GHz ) and from 2.65 to 2.83 (at 20 GHz). At low frequencies, the dielectric constant was determined from current−voltage characteristics of Al−polyterpenol−Al devices. At frequencies below 100 kHz, the dielectric constant varied with RF power, from 3.86 to 4.42 at 1 kHz. For all samples, the resistivity was in order of 10⁸−10⁹ _m (at 6 V), confirming the insulating nature of polyterpenol material. In situ iodine doping was demonstrated to increase the conductivity of polyterpenol, from 5.05 × 10⁻⁸ S/cm to 1.20 × 10⁻⁶ S/cm (at 20 V). Exposed to ambient conditions over extended period of time, polyterpenol thin films were demonstrated to be optically, physically and chemically stable. The bulk of ageing occurred within first 150 h after deposition and was attributed to oxidation and volumetric relaxation. Thermal ageing studies indicated thermal stability increased for the films manufactured at higher RF powers, with degradation onset temperature associated with weight loss shifting from 150 ºC to 205 ºC for 10 W and 100 W polyterpenol, respectively. Annealing the films to 405 °C resulted in full dissociation of the polymer, with minimal residue. Given the outcomes of the fundamental characterisation, a number of potential applications for polyterpenol have been identified. Flexibility, tunable permittivity and loss tangent properties of polyterpenol suggest the material can be used as an insulating layer in plastic electronics. Implementation of polyterpenol as a surface modification of the gate insulator in pentacene-based Field Effect Transistor resulted in significant improvements, shifting the threshold voltage from + 20 V to –3 V, enhancing the effective mobility from 0.012 to 0.021 cm²/Vs, and improving the switching property of the device from 10⁷ to 10⁴. Polyterpenol was demonstrated to have a hole transport electron blocking property, with potential applications in many organic devices, such as organic light emitting diodes. Encapsulation of biomedical devices is also proposed, given that under favourable conditions, the original chemical and biological functionality of terpinen−4−ol molecule can be preserved. Films deposited at low RF power were shown to successfully prevent adhesion and retention of several important human pathogens, including P. aeruginosa, S. aureus, and S. epidermidis, whereas films deposited at higher RF power promoted bacterial cell adhesion and biofilm formation. Preliminary investigations into in vitro biocompatibility of polyterpenol demonstrated the coating to be non−toxic for several types of eukaryotic cells, including Balb/c mice macrophage and human monocyte type (HTP−1 non-adherent) cells. Applied to magnesium substrates, polyterpenol encapsulating layer significantly slowed down in vitro biodegradation of the metal, thus increasing the viability and growth of HTP−1 cells. Recently, applied to varied nanostructured titanium surfaces, polyterpenol thin films successfully reduced attachment, growth, and viability of P. aeruginosa and S. aureus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rising demand for medical implants for ageing populations and ongoing advancements in medical technology continue to drive the use of implantable devices. Higher implant usage has a consequent increased incidence of implant-related infections, and associated prolonged patient care, pain and loss of limb and other organ function. Numerous antibacterial surfaces have been designed that prevent the onset of biofilm formation, thus reducing or preventing implant-associated infections through inhibiting bacterial adhesion or by killing the organisms that successfully attach to the surface of the implant. Other surfaces have been designed to stimulate a local immune response, promoting the natural clearing of the invading pathogen. The desired antibacterial effects are typically achieved by modulating the surface chemistry and morphology of the implant material, by means of the controlled release of pharmacological agents and bioactive compounds from the surface of the material, or by a combination of both processes. An important issue for any type of antibacterial surface modification lies in balancing the non-fouling, bacteriostatic or bactericidal effects against local and systemic biocompatibility. In this chapter, we will first describe the concept of biocompatibility and its evolution, from devices that do not evoke a negative host response to those that actively drive host regeneration. We will then review the challenges associated with merging the need for an implant material to withstand a bacterial load with those associated with supporting function restoration and tissue healing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sustainable societal and economic development relies on novel nanotechnologies that offer maximum efficiency at minimal environmental cost. Yet, it is very challenging to apply green chemistry approaches across the entire life cycle of nanotech products, from design and nanomaterial synthesis to utilization and disposal. Recently, novel, efficient methods based on nonequilibrium reactive plasma chemistries that minimize the process steps and dramatically reduce the use of expensive and hazardous reagents have been applied to low-cost natural and waste sources to produce value-added nanomaterials with a wide range of applications. This review discusses the distinctive effects of nonequilibrium reactive chemistries and how these effects can aid and advance the integration of sustainable chemistry into each stage of nanotech product life. Examples of the use of enabling plasma-based technologies in sustainable production and degradation of nanotech products are discussed—from selection of precursors derived from natural resources and their conversion into functional building units, to methods for green synthesis of useful naturally degradable carbon-based nanomaterials, to device operation and eventual disintegration into naturally degradable yet potentially reusable byproducts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multicultural social policies were formulated in Australia during the 1970s in response to challenges that had arisen the wake of a large-scale immigration program. Given recent intensification and diversification of immigrant intakes, however, understandings of multiculturalism have been contested repeatedly while new social demands have been made of the policy. In this context, questions have been raised about the adequacy of multicultural ethical education in Australian schools. These concern not only the type of ethics taught, but also the emphasis placed on ethics per se. This study emerges out of this context to look at the utility of using purpose-written philosophical materials specifically, immigration-themed materials written by advocates of philosophy for children – for development of ethical understanding in multicultural Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon has demonstrated great potential as anode materials for next-generation high-energy density rechargeable lithium ion batteries. However, its poor mechanical integrity needs to be improved to achieve the required cycling stability. Nano-structured silicon has been used to prevent the mechanical failure caused by large volume expansion of silicon. Unfortunately, pristine silicon nanostructures still suffer from quick capacity decay due to several reasons, such as formation of solid electrolyte interphase, poor electrical contact and agglomeration of nanostructures. Recently, increasing attention has been paid to exploring the possibilities of hybridization with carbonaceous nanostructures to solve these problems. In this review, the recent advances in the design of carbon-silicon nanohybrid anodes and existing challenges for the development of high-performance lithium battery anodes are briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The literature demonstrates that understanding relating to the use of materials in product design has been investigated from both engineering and design perspectives. However, none of these studies have explored the consumers’ concepts of the materials; rather they have focused on participants’ discussions of material samples. Consumers’ emotional reactions to the materials themselves or the consumers’ reaction to the durability of the materials have not been previously explored in depth. This research has investigated these issues and has found that consumers have very specific concepts about materials. Furthermore, the combinations of consumer concepts that are likely to elicit an emotional judgement by the consumer have also been identified. It was found that consumers are conscious of the durability of their products and the materials that they are made from. This knowledge contributes to the support of environmentally conscious design, as well as user-centered design knowledge and practice. An understanding of the emotion consumers attribute to the effect wear and aging had on the materials physical appearance has been achieved. This understanding of consumers’ emotional reactions to materials can contribute not only to design considerations but to knowledge regarding the promotion of prolonged product-user relationships.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much of physical education curriculum in the developed world and specifically in Australia tends to be guided in principle by syllabus documents that represent, in varying degrees, some form of government education priorities. Through the use of critical discourse analysis we analyze one such syllabus example (an official syllabus document of one of the Australian States) to explore the relationships between the emancipatory/social justice expectations presented in the rubric of and introduction to the official syllabus document, and the language details of learning outcomes that indicate how the expectations might be satisfied. Given the complexity and multilevel pathways of message systems/ideologies we question the efficacy of such documents oriented around social justice principles to genuinely deliver more radical agendas which promote social change and encourage a preparedness to engage in social action leading to a betterment of society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional (3D) Fe2(MoO4)3 microspheres with ultrathin nanosheet constituents are first synthesized as anode materials for the lithium-ion battery. It is interesting that the single-crystalline nanosheets allow rapid electron/ion transport on the inside, and the high porosity ensures fast diffusion of liquid electrolyte in energy storage applications. The electrochemical properties of Fe2(MoO4)3 as anode demonstrates that 3D Fe2(MoO4)3 microspheres deliver an initial capacity of 1855 mAh/g at a current density of 100 mA/g. Particularly, when the current density is increased to 800 mA/g, the reversible capacity of Fe2(MoO4)3 anode still arrived at 456 mAh/g over 50 cycles. The large and reversible capacities and stable charge–discharge cycling performance indicate that Fe2(MoO4)3 is a promising anode material for lithium battery applications. Graphical abstract The electrochemical properties of Fe2(MoO4)3 as anode demonstrates that 3D Fe2(MoO4)3 microspheres delivered an initial capacity of 1855 mAh/g at a current density of 100 mA/g. When the current density was increased to 800 mA/g, the Fe2(MoO4)3 still behaved high reversible capacity and good cycle performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fly-eye bio-inspired inorganic nanostructures are synthesized via a two-step self-assembly approach, which have low contact angle hysteresis and excellent anti-fogging properties, and are promising candidates for anti-freezing/fogging materials to be applied in extreme and hazardous environments.