277 resultados para Hazard Mitigation
Resumo:
Background: Sleepiness is a direct contributor to a substantial proportion of fatal and severe road cashes. A number of technological solutions designed to detect sleepiness have been developed, but self-awareness of increasing sleepiness remains a critical component in on-road strategies for mitigating this risk. In order to take appropriate action when sleepy, drivers’ perceptions of their level of sleepiness must be accurate. Aims: This study aimed to assess capacity to accurately identify sleepiness and self-regulate driving cessation during a validated driving simulator task. Participants: Participants comprised 26 young adult drivers (20-28 years). The drivers had open licenses but no other exclusion criteria where used. Methods: Participants woke at 5am, and took part in a laboratory-based hazard perception driving simulation, either at mid-morning or mid-afternoon. Established physiological measures (including EEG) and subjective measures (sleepiness ratings) previously found sensitive to changes in sleepiness levels were utilised. Participants were instructed to ‘drive’ until they believed that sleepiness had impaired their ability to drive safely. They were then offered a nap opportunity. Results: The mean duration of the drive before cessation was 39 minutes (±18 minutes). Almost all (23/26) of the participants then achieved sleep during the nap opportunity. These data suggest that the participants’ perceptions of sleepiness were specific. However, EEG data from a number of participants suggested very high levels of sleepiness prior to driving cessation, suggesting poor sensitivity. Conclusions: Participants reported high levels of sleepiness while driving after very moderate sleep restriction. They were able to identify increasing sleepiness during the test period, could decide to cease driving and in most cases were sufficiently sleepy to achieve sleep during the daytime session. However, the levels of sleepiness achieved prior to driving cessation suggest poor accuracy in self-perception and regulation. This presents practical issues for the implementation of fatigue and sleep-related strategies to improve driver safety.
Resumo:
Organizations adopt a Supply Chain Management System (SCMS) expecting benefits to the organization and its functions. However, organizations are facing mounting challenges to realizing benefits through SCMS. Studies suggest a growing dissatisfaction among client organizations due to an increasing gap between expectations and realization of SCMS benefits. Further, reflecting the Enterprise System studies such as Seddon et al. (2010), SCMS benefits are also expected to flow to the organization throughout its lifecycle rather than being realized all at once. This research therefore proposes to derive a lifecycle-wide understanding of SCMS benefits and realization to derive a benefit expectation management framework to attain the full potential of an SCMS. The primary research question of this study is: How can client organizations better manage their benefit expectations of SCM systems? The specific research goals of the current study include: (1) to better understand the misalignment of received and expected benefits of SCM systems; (2) to identify the key factors influencing SCM system expectations and to develop a framework to manage SCMS benefits; (3) to explore how organizational satisfaction is influenced by the lack of SCMS benefit confirmation; and (4) to explore how to improve the realization of SCM system benefits. Expectation-Confirmation Theory (ECT) provides the theoretical underpinning for this study. ECT has been widely used in the consumer behavior literature to study customer satisfaction, post-purchase behavior and service marketing in general. Recently, ECT has been extended into Information Systems (IS) research focusing on individual user satisfaction and IS continuance. However, only a handful of studies have employed ECT to study organizational satisfaction on large-scale IS. The current study will enrich the research stream by extending ECT into organizational-level analysis and verifying the preliminary findings of relevant works by Staples et al. (2002), Nevo and Chan (2007) and Nevo and Wade (2007). Moreover, this study will go further trying to operationalize the constructs of ECT into the context of SCMS. The empirical findings of the study commence with a content analysis, through which 41 vendor reports and academic reports are analyzed yielding sixty expected benefits of SCMS. Then, the expected benefits are compared with the benefits realized at a case organization in the Fast Moving Consumer Goods industry sector that had implemented a SAP Supply Chain Management System seven years earlier. The study develops an SCMS Benefit Expectation Management (SCMS-BEM) Framework. The comparison of benefit expectations and confirmations highlights that, while certain benefits are realized earlier in the lifecycle, other benefits could take almost a decade to realize. Further analysis and discussion on how the developed SCMS-BEM Framework influences ECT when applied in SCMS was also conducted. It is recommended that when establishing their expectations of the SCMS, clients should remember that confirmation of these expectations will have a long lifecycle, as shown in the different time periods in the SCMS-BEM Framework. Moreover, the SCMS-BEM Framework will allow organizations to maintain high levels of satisfaction through careful mitigation and confirming expectations based on the lifecycle phase. In addition, the study reveals that different stakeholder groups have different expectations of the same SCMS. The perspective of multiple stakeholders has significant implications for the application of ECT in the SCMS context. When forming expectations of the SCMS, the collection of organizational benefits of SCMS should represent the perceptions of all stakeholder groups. The same mechanism should be employed in the measurements of received SCMS benefits. Moreover, for SCMS, there exists interdependence of the satisfaction among the various stakeholders. The satisfaction of decision-makers or the authorized staff is not only driven by their own expectation confirmation level, it is also influenced by the confirmation level of other stakeholders‘ expectations in the organization. Satisfaction from any one particular stakeholder group can not reflect the true satisfaction of the client organization. Furthermore, it is inferred from the SCMS-BEM Framework that organizations should place emphasis on the viewpoints of the operational and management staff when evaluating the benefits of SCMS in the short and middle term. At the same time, organizations should be placing more attention on the perspectives of strategic staff when evaluating the performance of the SCMS in the long term.
Resumo:
It was rugby league State of Origin night 2008 and a group of adults had descended upon a house in Eagleby, Brisbane to have some drinks and to celebrate the game. At 11pm that evening, Shane Thomas Davidson entered the bedroom of the homeowner’s 10-year-old son, TC. Davidson approached the bed and began to massage the boy’s penis under his clothing, which caused TC to wake. Davidson stated, ‘Show me how big your willy is and I’ll show you how big mine is’. TC refused the request and after a small period of time, left the bedroom and told his father what had happened...
Resumo:
The pollutant impacts of urban stormwater runoff on receiving waters are well documented in research literature. However, it is road surfaces that are commonly identified as the significant pollutant source. This paper presents the outcomes of an extensive program of research into the role of roof surfaces in urban water quality with particular focus on solids, nutrients and organic carbon. The outcomes confirmed that roof surfaces play an important role in influencing the pollutant characteristics of urban stormwater runoff. Pollutant build-up and wash-off characteristics for roads and roof surfaces were found to be appreciably different. The pollutant wash-off characteristics exhibited by roof surfaces show that it influences the first flush phenomenon more significantly than road surfaces. In most urban catchments, as roof surfaces constitutes a higher fraction of impervious area compared to road surfaces, it is important that the pollutant generation role of roof surfaces is specifically taken into consideration in stormwater quality mitigation strategies.
Resumo:
This paper presents an approach to derive requirements for an avionics architecture that provides onboard sense-and-avoid and autonomous emergency forced landing capabilities to a UAS. The approach is based on two design paradigms that (1) derive requirements analyzing the common functionality between these two functions to then derive requirements for sensors, computing capability, interfaces, etc. (2) consider the risk and safety mitigation associated with these functions to derive certification requirements for the system design. We propose to use the Aircraft Certification Matrix (ACM) approach to tailor the system Development Assurance Levels (DAL) and architecture requirements in accordance with acceptable risk criteria. This architecture is developed under the name “Flight Guardian”. Flight Guardian is an avionics architecture that integrates common sensory elements that are essential components of any UAS that is required to be dependable. The Flight Guardian concept is also applicable to conventionally piloted aircraft, where it will serve to reduce cockpit workload.
Resumo:
Road safety barriers are used to minimise the severity of road accidents and protect lives and property. There are several types of barrier in use today. This paper reports the initial phase of research carried out to study the impact response of portable water-filled barrier (PWFB) which has the potential to absorb impact energy and hence provide crash mitigation under low to moderate speeds. Current research on the impact and energy absorption capacity of water-filled road safety barriers is limited due to the complexity of fluid-structure interaction under dynamic impact. In this paper, a novel fluid-structure interaction method is developed based on the combination of Smooth Particle Hydrodynamics (SPH) and Finite Element Method (FEM). The sloshing phenomenon of water inside a PWFB is investigated to explore the energy absorption capacity of water under dynamic impact. It was found that water plays an important role in energy absorption. The coupling analysis developed in this paper will provide a platform to further the research in optimising the behaviour of the PWFB. The effect of the amount of water on its energy absorption capacity is investigated and the results have practical applications in the design of PWFBs.
Resumo:
This study investigated the effect of a fear-based personality trait, as conceptualised in Gray’s revised reinforcement sensitivity theory (RST) by the strength of the fight/flight/freeze system (FFFS), on young people’s driving simulator performance under induced psychosocial stress. Seventy-one young drivers completed the Jackson-5 questionnaire of RST traits, followed by a psychosocial stress or relaxation induction procedure (random allocation to groups) and then a city driving simulator task. Some support was found for the hypothesis that higher FFFS sensitivity would result in poorer driving performance under stress, in terms of significantly poorer hazard responses, possibly due to an increased attentional focus on the aversive cues inherent in the stress induction leaving reduced attentional capacity for the driving task. These results suggest that stress may lead to riskier driving behaviour in individuals with fearful RST personality styles.
Resumo:
Introduction: Sleepiness contributes to a substantial proportion of fatal and severe road crashes. Efforts to reduce the incidence of sleep-related crashes have largely focussed on driver education to promote self-regulation of driving behaviour. However, effective self-regulation requires accurate self-perception of sleepiness. The aim of this study was to assess capacity to accurately identify sleepiness, and self-regulate driving cessation, during a validated driving simulator task. Methods: Participants comprised 26 young adult drivers (20-28 years) who had open licenses. No other exclusion criteria where used. Participants were partially sleep deprived (05:00 wake up) and completed a laboratory-based hazard perception driving simulation, counterbalanced to either at mid-morning or mid-afternoon. Established physiological measures (i.e., EEG, EOG) and subjective measures (Karolinska Sleepiness Scale), previously found sensitive to changes in sleepiness levels, were utilised. Participants were instructed to ‘drive’ on the simulator until they believed that sleepiness had impaired their ability to drive safely. They were then offered a nap opportunity. Results: The mean duration of the drive before cessation was 36.1 minutes (±17.7 minutes). Subjective sleepiness increased significantly from the beginning (KSS=6.6±0.7) to the end (KSS=8.2±0.5) of the driving period. No significant differences were found for EEG spectral power measures of sleepiness (i.e., theta or alpha spectral power) from the start of the driving task to the point of cessation of driving. During the nap opportunity, 88% of the participants (23/26) were able to reach sleep onset with an average latency of 9.9 minutes (±7.5 minutes). The average nap duration was 15.1 minutes (±8.1 minutes). Sleep architecture during the nap was predominately comprised of Stages I and II (combined 92%). Discussion: Participants reported high levels of sleepiness during daytime driving after very moderate sleep restriction. They were able to report increasing sleepiness during the test period despite no observed change in standard physiological indices of sleepiness. This increased subjective sleepiness had behavioural validity as the participants had high ‘napability’ at the point of driving cessation, with most achieving some degree of subsequent sleep. This study suggests that the nature of a safety instruction (i.e. how to view sleepiness) can be a determinant of driver behaviour.
Resumo:
The article explores the role of international environmental legal principles and their role in future climate change instruments. The five international environmental legal principles explored in this context are: inter and intergenerational equity, the precautionary principle, common but differentiated responsibility, the polluter pays and principle and the principles of responsibility and prevention. Principles are used within regulatory frameworks to guide the interpretation and implementation of the obligations specified within the instrument. It is found that these principles provide a useful basis for the development of international adaptation and mitigation measures that are equitable and ethical in nature. This article argues that these principles must be drafted more strategically into international climate change instruments allowing them to serve as a foundational basis upon which more stringent and equitable binding duties and rights can be derived from. This article makes some recommendations as to the type of obligations that these principles could be used to inform in future climate instruments.
Resumo:
Whilst the compression ignition (CI) engine exhibits many design advantages relative to its spark ignition engine counterpart; such as: high thermal efficiency, fuel economy and low carbon monoxide and hydrocarbon emissions, the issue of Diesel Particulate Matter (DPM) emissions continues to be an unresolved problem for the CI engine. Primarily, this thesis investigates a range of DPM mitigation strategies such as alternative fuels, injection technologies and combustion strategies conducted with a view to determine their impact on the physico-chemical properties of DPM emissions, and consequently to shed light on their likely human health impacts. Regulated gaseous emissions, Nitric oxide (NO), Carbon monoxide (CO), and Hydrocarbons (HCs), were measured in all experimental campaigns, although the major focus in this research program was on particulate emissions...
Resumo:
Utilization of multiport-antennas represents an appropriate way for the mitigation of multi-path fading in wireless communication systems. However, to obtain low correlation between the signals from different antenna ports and to prevent gain reduction by cross-talk, large antenna elements spacing is expected. Polarization diversity allows signal separation even with small antenna spacing. Although it is effective, polarization diversity alone does not suffice once the number of antennas exceeds the number of orthogonal polarizations. This paper presents an approach which combines a novel array concept with the use of dual polarization. The theory is verified by a compact dual polarized patch antenna array, which consists of four elements and a decoupling network.
Resumo:
In a September 2010 media release the Prime Minister of Australia presented the terms of reference for the newly established Multi-Party Climate Change Committee. Although the Committee is charged with considering climate change mitigation measures in general, specifically the Committee must consider an appropriate mechanism for the establishment of a carbon price. The purpose of this article is to provide an overview of the mechanisms to be considered by the Climate Change Committee, including the use of emissions trading and carbon levies in other jurisdictions. This article argues that for any effective investigation of a carbon price for Australia to occur, a thorough knowledge of other jurisdictions’ methods for carbon pricing is essential.
Resumo:
Article XX has been a valuable instrument to justify exceptions from the anti-discrimination provisions of the GATT 1994. In general, this Article is considered by experts to be the most likely defence for any climate change mitigation measure in breach GATT 1994 obligations. That assumption is not in dispute here; rather, this article considers the requirements of the Article XX exceptions, but also explores the conditions of the National Security exception contained in Article XXI. Although it is possible that this exception could be used for climate change mitigation measures, this paper argues that it is unlikely that the National Security exception could be legitimately applied in these circumstances without member agreement to the contrary.
Resumo:
A number of tests and test batteries are available for the prediction of older driver safety, but many of these have not been validated against standardized driving outcome measures. The aim of this study was to evaluate a series of previously described screening tests in terms of their ability to predict the potential for safe and unsafe driving. Participants included 79 community-dwelling older drivers (M=72.16 years, SD=5.46; range 65-88 years; 57 males and 22 females) who completed a previously validated multi-disciplinary driving assessment, a hazard perception test, a hazard change detection test and a battery of vision and cognitive tests. Participants also completed a standardized on-road driving assessment. The multi-disciplinary test battery had the highest predictive ability with a sensitivity of 80% and a specificity of 73%, followed by the hazard perception test which demonstrated a sensitivity of 75% and a specificity of 61%. These findings suggest that a relatively simple and practical battery of tests from a range of domains has the capacity to predict safe and unsafe driving in older adults.
Resumo:
The study presented in this paper reviewed 9,358 accidents which occurred in the U.S. construction industry between 2002 and 2011, in order to understand the relationships between the risk factors and injury severity (e.g. fatalities, hospitalized injuries, or non-hospitalized injuries) and to develop a strategic prevention plan to reduce the likelihood of fatalities where an accident is unavoidable. The study specifically aims to: (1) verify the relationships among risk factors, accident types, and injury severity, (2) determine significant risk factors associated with each accident type that are highly correlated to injury severity, and (3) analyze the impact of the identified key factors on accident and fatality occurrence. The analysis results explained that safety managers’ roles are critical to reducing human-related risks—particularly misjudgement of hazardous situations—through safety training and education, appropriate use of safety devices and proper safety inspection. However, for environment-related factors, the dominant risk factors were different depending on the different accident types. The outcomes of this study will assist safety managers to understand the nature of construction accidents and plan for strategic risk mitigation by prioritizing high frequency risk factors to effectively control accident occurrence and manage the likelihood of fatal injuries on construction sites.