250 resultados para Functional-anatomy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. This study investigated cognitive functioning among older adults with physical debility not attributable to an acute injury or neurological condition who were receiving subacute inpatient physical rehabilitation. Design. A cohort investigation with assessments at admission and discharge. Setting. Three geriatric rehabilitation hospital wards. Participants. Consecutive rehabilitation admissions () following acute hospitalization (study criteria excluded orthopaedic, neurological, or amputation admissions). Intervention. Usual rehabilitation care. Measurements. The Functional Independence Measure (FIM) Cognitive and Motor items. Results. A total of 704 (86.5%) participants (mean age = 76.5 years) completed both assessments. Significant improvement in FIM Cognitive items (-score range 3.93–8.74, all ) and FIM Cognitive total score (-score = 9.12, ) occurred, in addition to improvement in FIM Motor performance. A moderate positive correlation existed between change in Motor and Cognitive scores (Spearman’s rho = 0.41). Generalized linear modelling indicated that better cognition at admission (coefficient = 0.398, ) and younger age (coefficient = −0.280, ) were predictive of improvement in Motor performance. Younger age (coefficient = −0.049, ) was predictive of improvement in FIM Cognitive score. Conclusions. Improvement in cognitive functioning was observed in addition to motor function improvement among this population. Causal links cannot be drawn without further research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kiwi (Apteryx spp.) have a visual system unlike that of other nocturnal birds, and have specializations to their auditory, olfactory and tactile systems. Eye size, binocular visual fields and visual brain centers in kiwi are proportionally the smallest yet recorded among birds. Given the many unique features of the kiwi visual system, we examined the laminar organization of the kiwi retina to determine if they evolved increased light sensitivity with a shift to a nocturnal niche or if they retained features of their diurnal ancestor. The laminar organization of the kiwi retina was consistent with an ability to detect low light levels similar to that of other nocturnal species. In particular, the retina appeared to have a high proportion of rod photoreceptors compared to diurnal species, as evidenced by a thick outer nuclear layer, and also numerous thin photoreceptor segments intercalated among the conical shaped cone photoreceptor inner segments. Therefore, the retinal structure of kiwi was consistent with increased light sensitivity, although other features of the visual system, such as eye size, suggest a reduced reliance on vision. The unique combination of a nocturnal retina and smaller than expected eye size, binocular visual fields and brain regions make the kiwi visual system unlike that of any bird examined to date. Whether these features of their visual system are an evolutionary design that meets their specific visual needs or are a remnant of a kiwi ancestor that relied more heavily on vision is yet to be determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three families of probe-foraging birds, Scolopacidae (sandpipers and snipes), Apterygidae (kiwi), and Threskiornithidae (ibises, including spoonbills) have independently evolved long, narrow bills containing clusters of vibration-sensitive mechanoreceptors (Herbst corpuscles) within pits in the bill-tip. These ‘bill-tip organs’ allow birds to detect buried or submerged prey via substrate-borne vibrations and/or interstitial pressure gradients. Shorebirds, kiwi and ibises are only distantly related, with the phylogenetic divide between kiwi and the other two taxa being particularly deep. We compared the bill-tip structure and associated somatosensory regions in the brains of kiwi and shorebirds to understand the degree of convergence of these systems between the two taxa. For comparison, we also included data from other taxa including waterfowl (Anatidae) and parrots (Psittaculidae and Cacatuidae), non-apterygid ratites, and other probe-foraging and non probe-foraging birds including non-scolopacid shorebirds (Charadriidae, Haematopodidae, Recurvirostridae and Sternidae). We show that the bill-tip organ structure was broadly similar between the Apterygidae and Scolopacidae, however some inter-specific variation was found in the number, shape and orientation of sensory pits between the two groups. Kiwi, scolopacid shorebirds, waterfowl and parrots all shared hypertrophy or near-hypertrophy of the principal sensory trigeminal nucleus. Hypertrophy of the nucleus basorostralis, however, occurred only in waterfowl, kiwi, three of the scolopacid species examined and a species of oystercatcher (Charadriiformes: Haematopodidae). Hypertrophy of the principal sensory trigeminal nucleus in kiwi, Scolopacidae, and other tactile specialists appears to have co-evolved alongside bill-tip specializations, whereas hypertrophy of nucleus basorostralis may be influenced to a greater extent by other sensory inputs. We suggest that similarities between kiwi and scolopacid bill-tip organs and associated somatosensory brain regions are likely a result of similar ecological selective pressures, with inter-specific variations reflecting finer-scale niche differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many of the 5,500 threatened species of vertebrates found worldwide are highly protected and generally unavailable for scientific investigation. Here we describe a noninvasive protocol to visualize the structure and size of brain in postmortem specimens. We demonstrate its utility by examining four endangered species of kiwi (Apteryx spp.). Frozen specimens are thawed and imaged using MRI, revealing internal details of brain structure. External brain morphology and an estimate of brain volume can be reliably obtained by creating 3D models. This method has facilitated a comparison of brain structure in the different kiwi species, one of which is on the brink of extinction. This new approach has the potential to extend our knowledge of brain structure to species that have until now been outside the reach of anatomical investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercise has reported benefits for those with dementia. In the current study we investigated the feasibility of delivery and the physical and functional benefits of an innovative aquatic exercise program for adults with moderate to severe dementia living in a nursing home aged care facility. Ten adults (88.4 years, inter quartile range 12.3) participated twice weekly for 12 weeks. Anthropometric and grip strength data, and measures of physical function and balance were collected at baseline and post-intervention. Feasibility was assessed by attendance, participation, enjoyment and recruitment. Following exercise, participant's left hand grip strength had improved significantly (p = .017). Small to moderate effect sizes were observed for other measures. A number of delivery challenges emerged, but participant enjoyment, benefits and attendance suggest feasibility. Aquatic exercise shows promise as an intervention among those with dementia who live in a nursing home aged care facility. Greater program investigation is warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Si has attracted enormous research and manufacturing attention as an anode material for lithium ion batteries (LIBs) because of its high specific capacity. The lack of a low cost and effective mechanism to prevent the pulverization of Si electrodes during the lithiation/ delithiation process has been a major barrier in the mass production of Si anodes. Naturally abundant gum arabic (GA), composed of polysaccharides and glycoproteins, is applied as a dualfunction binder to address this dilemma. Firstly, the hydroxyl groups of the polysaccharide in GA are crucial in ensuring strong binding to Si. Secondly, similar to the function of fiber in fiberreinforced concrete (FRC), the long chain glycoproteins provide further mechanical tolerance to dramatic volume expansion by Si nanoparticles. The resultant Si anodes present an outstanding capacity of ca. 2000 mAh/g at a 1 C rate and 1000 mAh/g at 2 C rate, respectively, throughout 500 cycles. Excellent long-term stability is demonstrated by the maintenance of 1000 mAh/g specific capacity at 1 C rate for over 1000 cycles. This low cost, naturally abundant and environmentally benign polymer is a promising binder for LIBs in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feedforward inhibition deficits have been consistently demonstrated in a range of neuropsychiatric conditions using prepulse inhibition (PPI) of the acoustic startle eye-blink reflex when assessing sensorimotor gating. While PPI can be recorded in acutely decerebrated rats, behavioural, pharmacological and psychophysiological studies suggest the involvement of a complex neural network extending from brainstem nuclei to higher order cortical areas. The current functional magnetic resonance imaging study investigated the neural network underlying PPI and its association with electromyographically (EMG) recorded PPI of the acoustic startle eye-blink reflex in 16 healthy volunteers. A sparse imaging design was employed to model signal changes in blood oxygenation level-dependent (BOLD) responses to acoustic startle probes that were preceded by a prepulse at 120 ms or 480 ms stimulus onset asynchrony or without prepulse. Sensorimotor gating was EMG confirmed for the 120-ms prepulse condition, while startle responses in the 480-ms prepulse condition did not differ from startle alone. Multiple regression analysis of BOLD contrasts identified activation in pons, thalamus, caudate nuclei, left angular gyrus and bilaterally in anterior cingulate, associated with EMGrecorded sensorimotor gating. Planned contrasts confirmed increased pons activation for startle alone vs 120-ms prepulse condition, while increased anterior superior frontal gyrus activation was confirmed for the reverse contrast. Our findings are consistent with a primary pontine circuitry of sensorimotor gating that interconnects with inferior parietal, superior temporal, frontal and prefrontal cortices via thalamus and striatum. PPI processes in the prefrontal, frontal and superior temporal cortex were functionally distinct from sensorimotor gating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Empirical evidence suggests impaired facial emotion recognition in schizophrenia. However, the nature of this deficit is the subject of ongoing research. The current study tested the hypothesis that a generalized deficit at an early stage of face-specific processing (i.e. putatively subserved by the fusiform gyrus) accounts for impaired facial emotion recognition in schizophrenia as opposed to the Negative Emotion-specific Deficit Model, which suggests impaired facial information processing at subsequent stages. Event-related potentials (ERPs) were recorded from 11 schizophrenia patients and 15 matched controls while performing a gender discrimination and a facial emotion recognition task. Significant reduction of the face-specific vertex positive potential (VPP) at a peak latency of 165 ms was confirmed in schizophrenia subjects whereas their early visual processing, as indexed by P1, was found to be intact. Attenuated VPP was found to correlate with subsequent P3 amplitude reduction and to predict accuracy when performing a facial emotion discrimination task. A subset of ten schizophrenia patients and ten matched healthy control subjects also performed similar tasks in the magnetic resonance imaging scanner. Patients showed reduced blood oxygenation level-dependent (BOLD) activation in the fusiform, inferior frontal, middle temporal and middle occipital gyrus as well as in the amygdala. Correlation analyses revealed that VPP and the subsequent P3a ERP components predict fusiform gyrus BOLD activation. These results suggest that problems in facial affect recognition in schizophrenia may represent flow-on effects of a generalized deficit in early visual processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to its three-dimensional folding pattern, the human neocortex; poses a challenge for accurate co-registration of grouped functional; brain imaging data. The present study addressed this problem by; employing three-dimensional continuum-mechanical image-warping; techniques to derive average anatomical representations for coregistration; of functional magnetic resonance brain imaging data; obtained from 10 male first-episode schizophrenia patients and 10 age-matched; male healthy volunteers while they performed a version of the; Tower of London task. This novel technique produced an equivalent; representation of blood oxygenation level dependent (BOLD) response; across hemispheres, cortical regions, and groups, respectively, when; compared to intensity average co-registration, using a deformable; Brodmann area atlas as anatomical reference. Somewhat closer; association of Brodmann area boundaries with primary visual and; auditory areas was evident using the gyral pattern average model.; Statistically-thresholded BOLD cluster data confirmed predominantly; bilateral prefrontal and parietal, right frontal and dorsolateral; prefrontal, and left occipital activation in healthy subjects, while; patients’ hemispheric dominance pattern was diminished or reversed,; particularly decreasing cortical BOLD response with increasing task; difficulty in the right superior temporal gyrus. Reduced regional gray; matter thickness correlated with reduced left-hemispheric prefrontal/; frontal and bilateral parietal BOLD activation in patients. This is the; first study demonstrating that reduction of regional gray matter in; first-episode schizophrenia patients is associated with impaired brain; function when performing the Tower of London task, and supports; previous findings of impaired executive attention and working memory; in schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was designed to identify the neural networks underlying automatic auditory deviance detection in 10 healthy subjects using functional magnetic resonance imaging. We measured blood oxygenation level-dependent contrasts derived from the comparison of blocks of stimuli presented as a series of standard tones (50 ms duration) alone versus blocks that contained rare duration-deviant tones (100 ms) that were interspersed among a series of frequent standard tones while subjects were watching a silent movie. Possible effects of scanner noise were assessed by a “no tone” condition. In line with previous positron emission tomography and EEG source modeling studies, we found temporal lobe and prefrontal cortical activation that was associated with auditory duration mismatch processing. Data were also analyzed employing an event-related hemodynamic response model, which confirmed activation in response to duration-deviant tones bilaterally in the superior temporal gyrus and prefrontally in the right inferior and middle frontal gyri. In line with previous electrophysiological reports, mismatch activation of these brain regions was significantly correlated with age. These findings suggest a close relationship of the event-related hemodynamic response pattern with the corresponding electrophysiological activity underlying the event-related “mismatch negativity” potential, a putative measure of auditory sensory memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regional cerebral blood flow (rCBF) and blood oxygenation level-dependent (BOLD) contrasts represent different physiological measures of brain activation. The present study aimed to compare two functional brain imaging techniques (functional magnetic resonance imaging versus [15O] positron emission tomography) when using Tower of London (TOL) problems as the activation task. A categorical analysis (task versus baseline) revealed a significant BOLD increase bilaterally for the dorsolateral prefrontal and inferior parietal cortex and for the cerebellum. A parametric haemodynamic response model (or regression analysis) confirmed a task-difficulty-dependent increase of BOLD and rCBF for the cerebellum and the left dorsolateral prefrontal cortex. In line with previous studies, a task-difficulty-dependent increase of left-hemispheric rCBF was also detected for the premotor cortex, cingulate, precuneus, and globus pallidus. These results imply consistency across the two neuroimaging modalities, particularly for the assessment of prefrontal brain function when using a parametric TOL adaptation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research project evaluated the biomechanical and functional outcomes of patients following total knee replacement measured at 6 and 12 months following surgery. Using more objective measures, patients were examined to determine changes in biomechanical and neuromuscular function during performance of activities of daily living such as walking, stair climbing and turning. Adaptations in joint positioning and performance were identified and progressive improvements were made in some areas of locomotor function. The findings of the study provided important objective information to contribute to the design and evaluation of prostheses, new surgical and rehabilitation procedures and improved recovery of patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scarring is a significant medical burden; financially to the health care system and physically and psychologically for patients. Importantly, there have been numerous case reports describing the occurrence of cancer in burn scars. Currently available therapies are not satisfactory due to their undesirable side-effects, complex delivery routes, requirements for long-term use and/or expense. Radix Arnebiae (Zi Cao), a perennial herb, has been clinically applied to treat burns and manage scars for thousands of years in Asia. Shikonin, an active component extracted from Radix Arnebiae, has been demonstrated to induce apoptosis in cancer cells. Apoptosis is an essential process during scar tissue remodelling. It was therefore hypothesized that Shikonin may induce apoptosis in scar-associated cells. This investigation presents the first detailed in vitro study examining the functional responses of scar-associated cells to Shikonin, and investigates the mechanisms underlying these responses. The data obtained suggests that Shikonin inhibits cell viability and proliferation and reduces detectable collagen in scar-derived fibroblasts. Further investigation revealed that Shikonin induces apoptosis in scar fibroblasts by differentially regulating the expression of caspase 3, Bcl-2, phospho-Erk1/2 and phospho-p38. In addition, Shikonin down-regulates the expression of collagen I, collagen III and alpha-smooth muscle actin genes hence attenuating collagen synthesis in scar-derived fibroblasts. In summary, it is demonstrated that Shikonin induces apoptosis and decreases collagen production in scar-associated fibroblasts and may therefore hold potential as a novel scar remediation therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research developed and applied an evaluative framework to analyse multiple scales of decision-making for environmental management planning. It is the first exploration of the sociological theory of structural-functionalism and its usefulness to support evidence based decision-making in a planning context. The framework was applied to analyse decision-making in Queensland's Cape York Peninsula and Wet Tropics regions.