381 resultados para ELECTROCATALYTIC PROPERTIES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical and chemical properties of biodiesel are influenced by structural features of the fatty acids, such as chain length, degree of unsaturation and branching of the carbon chain. This study investigated if microalgal fatty acid profiles are suitable for biodiesel characterization and species selection through Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA) analysis. Fatty acid methyl ester (FAME) profiles were used to calculate the likely key chemical and physical properties of the biodiesel [cetane number (CN), iodine value (IV), cold filter plugging point, density, kinematic viscosity, higher heating value] of nine microalgal species (this study) and twelve species from the literature, selected for their suitability for cultivation in subtropical climates. An equal-parameter weighted (PROMETHEE-GAIA) ranked Nannochloropsis oculata, Extubocellulus sp. and Biddulphia sp. highest; the only species meeting the EN14214 and ASTM D6751-02 biodiesel standards, except for the double bond limit in the EN14214. Chlorella vulgaris outranked N. oculata when the twelve microalgae were included. Culture growth phase (stationary) and, to a lesser extent, nutrient provision affected CN and IV values of N. oculata due to lower eicosapentaenoic acid (EPA) contents. Application of a polyunsaturated fatty acid (PUFA) weighting to saturation led to a lower ranking of species exceeding the double bond EN14214 thresholds. In summary, CN, IV, C18:3 and double bond limits were the strongest drivers in equal biodiesel parameter-weighted PROMETHEE analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an electrochemical exfoliation method to produce controlled thickness graphene flakes by ultrasound assistance. Bilayer graphene flakes are dominant in the final product by using sonication during the electrochemical exfoliation process, while without sonication the product contains a larger percentage of four-layer graphene flakes. Graphene sheets prepared by using the two procedures are processed into films to measure their respective sheet resistance and optical transmittance. Solid-state electrolyte supercapacitors are made using the two types of graphene films. Our study reveals that films with a higher content of multilayer graphene flakes are more conductive, and their resistance is more easily reduced by thermal annealing, making them suitable as transparent conducting films. The film with higher content of bilayer graphene flakes shows instead higher capacitance when used as electrode in a supercapacitor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser deposition was used to deposit YBaCuO thin films on Yttria-stabilized Zirconia substrates, at substrate holder temperatures of 710-765 °C. We observed a transition from singlecrystalline to polycrystalline growth at a temperature of ∼750 °C. All films were highly c-axis oriented and had critical temperatures between 89.5 and 92 K. In the twinned singlecrystalline films, the lowest measured microwave surface resistance was 0.37 mΩ at 4.2 K and 21.5 GHz, and the highest critical current 5×106 A/cm2 at 77 K. The polycrystalline films had up to a factor of 50 higher surface resistance and a factor of 10 lower critical current. A meander line resonator made of a film on a LaAlO3 substrate, showed a microwave surface resistance of 5μΩ at 4.2 K and 2.5 GHz. © 1991.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructure of artificial grain boundaries in YBa2Cu3O7-δ (YBCO) thin films grown on [001] tilt YZrO2 (YSZ) bicrystal substrates has been characterized using transmission electron microscopy and atomic force microscopy. Despite a relatively straight morphology of the substrate boundaries, the film boundaries were wavy. The waviness was a result of the combined effects of grooving at the substrate boundaries prior to the film deposition and an island-growth mechanism for YBCO on YSZ substrates. The dihedral angle of the groove walls varied with the misorientation angle and depended on the symmetry of the substrate boundary. The amplitudes of the film boundary waviness compared well with the widths of the grooves. In addition, the grooves induced local bending of the YBCO lattice planes and additional tilt components perpendicular to the c-axis close to the film boundaries. © 1995.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-periodic structural variation has been found in the high Tc cuprates, YBa2Cu3O7-x and Hg0.67Pb0.33Ba2Ca2Cu 3O8+δ, by image analysis of high resolution transmission electron microscope (HRTEM) images. We use two methods for analysis of the HRTEM images. The first method is a means for measuring the bending of lattice fringes at twin planes. The second method is a low-pass filter technique which enhances information contained by diffuse-scattered electrons and reveals what appears to be an interference effect between domains of differing lattice parameter in the top and bottom of the thin foil. We believe that these methods of image analysis could be usefully applied to the many thousands of HRTEM images that have been collected by other workers in the high temperature superconductor field. This work provides direct structural evidence for phase separation in high Tc cuprates, and gives support to recent stripes models that have been proposed to explain various angle resolved photoelectron spectroscopy and nuclear magnetic resonance data. We believe that the structural variation is a response to an opening of an electronic solubility gap where holes are not uniformly distributed in the material but are confined to metallic stripes. Optimum doping may occur as a consequence of the diffuse boundaries between stripes which arise from spinodal decomposition. Theoretical ideas about the high Tc cuprates which treat the cuprates as homogeneous may need to be modified in order to take account of this type of structural variation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of c-axis oriented Y1Ba2Cu 3Ox thin films on an amorphous buffer layer of Y-ZrO 2, deposited on sapphire substrates, was investigated. Both films were grown by a pulsed laser deposition technique. A strong correlation was observed between the properties of Y1Ba2Cu 3Ox and the thickness of the buffer layer. A Tc of 89 K was obtained for an optimal buffer layer thickness of 9 nm. A model that adequately describes the film growth process was developed. A multilayer system of Y1Ba2Cu3Ox and amorphous Y-ZrO2 was grown and a Tc of 87 K for the upper c-axis oriented layer was measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weak links were fabricated by pulsed laser deposition of YBa 2Cu3Ox thin films on Y-ZrO2 bicrystal substrates. They were formed by transferring the bicrystal boundary into the epitaxial film during the film growth. Their properties were determined by the misorientation angle ( theta ) between the two halves of the bicrystal. The transport properties of the weak links were studied as a function of theta and an exponential dependence of the weak link critical current density was observed for angles up to 45 degrees . Clear Josephson effects with good microwave and magnetic field response were observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Y Ba Cu oxide thin films were grown epitaxially on single cryst. yttria-stabilized zirconia substrates by laser deposition. [on SciFinder(R)]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Engineered grain boundary Josephson junctions in YBaCuO were formed on bicrystal Y-ZrO2 substrates. Laser deposited films were patterned into micron size microbridges. The authors obsd. a pronounced correlation between superconducting transport properties of grain boundary junctions and the misorientation angle θ between the two halves of the bicrystal. The crit. Josephson current Ic decreased about four orders of magnitude as θ was increased from 0 to 45 degrees. Clear microwave and magnetic field responses were obsd. at 77 K. At this temp., crit. current times normal resistance products, IcRn, of up to 1 mV were measured for low angle grain boundaries, and Shapiro steps were obsd. up to that voltage. DC SQUIDs were fabricated, and best performance at 77 K was obtained for θ = 32° with a 4-μm strip width. To utilize the higher IcRn value of a lower θ, submicron junctions have to be developed. [on SciFinder(R)]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, researchers reported that nanowires (NWs) are often polycrystalline, which contain grain or twin boundaries that transect the whole NW normal to its axial direction into a bamboo like structure. In this work, large-scale molecular dynamics simulation is employed to investigate the torsional behaviours of bamboo-like structured Cu NWs. The existence of grain boundaries is found to induce a considerably large reduction to the critical angle, and the more of grain boundaries the less reduction appears, whereas, the presence of twin boundaries only results in a relatively smaller reduction to the critical angle. The introduction of grain boundaries reduces the torsional rigidity of the NW, whereas, the twin boundaries exert insignificant influence to the torsional rigidity. NWs with grain boundaries are inclined to produce a local HCP structure during loading, and the plastic deformation is usually evenly distributed along the axial axis of the NW. The plastic deformation of both perfect NW and NWs with twin boundaries is dominated by the nucleation and propagation of parallel intrinsic stacking faults. This study will enrich the current understanding of the mechanical properties of NWs, which will eventually shed lights on their applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the mechanical properties of different two-dimensional carbon heterojunctions (HJs) made from graphene and various stable graphene allotropes, including α-, β-, γ- and 6612-graphyne (GY), and graphdiyne (GDY). It is found that all HJs exhibit a brittle behaviour except the one with α-GY, which however shows a hardening process due to the formation of triple carbon rings. Such hardening process has greatly deferred the failure of the structure. The yielding of the HJs is usually initiated at the interface between graphene and graphene allotropes, and monoatomic carbon rings are normally formed after yielding. By varying the locations of graphene (either in the middle or at the two ends of the HJs), similar mechanical properties have been obtained, suggesting insignificant impacts from location of graphene allotropes. Whereas, changing the types and percentages of the graphene allotropes, the HJs exhibit vastly different mechanical properties. In general, with the increasing graphene percentage, the yield strain decreases and the effective Young’s modulus increases. Meanwhile, the yield stress appears irrelevant with the graphene percentage. This study provides a fundamental understanding of the tensile properties of the heterojunctions that are crucial for the design and engineering of their mechanical properties, in order to facilitate their emerging future applications in nanoscale devices, such as flexible/stretchable electronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of the electrodeposition of polycrystalline gold in aqueous solution is important from the viewpoint that in electrocatalysis applications ill-defined micro- and nanostructured surfaces are often employed. In this work, the morphology of gold was controlled by the electrodeposition potential and the introduction of Pb(CH3COO)2•3H2O into the plating solution to give either smooth or nanostructured gold crystallites or large dendritic structures which have been characterized by scanning electron microscopy (SEM). The latter structures were achieved through a novel in situ galvanic replacement of lead with AuCl4−(aq) during the course of gold electrodeposition. The electrochemical behavior of electrodeposited gold in the double layer region was studied in acidic and alkaline media and related to electrocatalytic performance for the oxidation of hydrogen peroxide and methanol. It was found that electrodeposited gold is a significantly better electrocatalyst than a polished gold electrode; however, performance is highly dependent on the chosen deposition parameters. The fabrication of a deposit with highly active surface states, comparable to those achieved at severely disrupted metal surfaces through thermal and electrochemical methods, does not result in the most effective electrocatalyst. This is due to significant premonolayer oxidation that occurs in the double layer region of the electrodeposited gold. In particular, in alkaline solution, where gold usually shows the most electrocatalytic activity, these active surface states may be overoxidized and inhibit the electrocatalytic reaction. However, the activity and morphology of an electrodeposited film can be tailored whereby electrodeposited gold that exhibits nanostructure within the crystallites on the surface demonstrated enhanced electrocatalytic activity compared to smaller smooth gold crystallites and larger dendritic structures in potential regions well within the double layer region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of metals to store or trap considerable amounts of energy, and thus exist in a non-equilibrium or metastable state, is very well known in metallurgy; however, such behaviour, which is intimately connected with the defect character of metals, has been largely ignored in noble metal surface electrochemistry. Techniques for generating unusually high energy surface states for gold, and the unusual voltammetric responses of such states, are outlined. The surprisingly high (and complex) electrocatalytic activity of gold in aqueous media is attributed to the presence of a range of such non-equilibrium states as the vital entities at active sites on conventional gold surfaces. The possible relevance of these ideas to account for the remarkable catalytic activity of oxide-supported gold microparticles is briefly outlined.