410 resultados para DNA vaccine delivery
Resumo:
Background Human papillomavirus (HPV) is the aetiological agent for cervical cancer and genital warts. Concurrent HPV and HIV infection in the South African population is high. HIV positive (+) women are often infected with multiple, rare and undetermined HPV types. Data on HPV incidence and genotype distribution are based on commercial HPV detection kits, but these kits may not detect all HPV types in HIV + women. The objectives of this study were to (i) identify the HPV types not detected by commercial genotyping kits present in a cervical specimen from an HIV positive South African woman using next generation sequencing, and (ii) determine if these types were prevalent in a cohort of HIV-infected South African women. Methods Total DNA was isolated from 109 cervical specimens from South African HIV + women. A specimen within this cohort representing a complex multiple HPV infection, with 12 HPV genotypes detected by the Roche Linear Array HPV genotyping (LA) kit, was selected for next generation sequencing analysis. All HPV types present in this cervical specimen were identified by Illumina sequencing of the extracted DNA following rolling circle amplification. The prevalence of the HPV types identified by sequencing, but not included in the Roche LA, was then determined in the 109 HIV positive South African women by type-specific PCR. Results Illumina sequencing identified a total of 16 HPV genotypes in the selected specimen, with four genotypes (HPV-30, 74, 86 and 90) not included in the commercial kit. The prevalence's of HPV-30, 74, 86 and 90 in 109 HIV positive South African women were found to be 14.6 %, 12.8 %, 4.6 % and 8.3 % respectively. Conclusions Our results indicate that there are HPV types, with substantial prevalence, in HIV positive women not being detected in molecular epidemiology studies using commercial kits. The significance of these types in relation to cervical disease remains to be investigated.
Resumo:
Background: HIV-1 Pr55gag virus-like particles (VLPs) expressed by baculovirus in insect cells are considered to be a very promising HIV-1 vaccine candidate, as they have been shown to elicit broad cellular immune responses when tested in animals, particularly when used as a boost to DNA or BCG vaccines. However, it is important for the VLPs to retain their structure for them to be fully functional and effective. The medium in which the VLPs are formulated and the temperature at which they are stored are two important factors affecting their stability. FINDINGS We describe the screening of 3 different readily available formulation media (sorbitol, sucrose and trehalose) for their ability to stabilise HIV-1 Pr55gag VLPs during prolonged storage. Transmission electron microscopy (TEM) was done on VLPs stored at two different concentrations of the media at three different temperatures (4[degree sign]C, --20[degree sign]C and -70[degree sign]C) over different time periods, and the appearance of the VLPs was compared. VLPs stored in 15% trehalose at -70[degree sign]C retained their original appearance the most effectively over a period of 12 months. VLPs stored in 5% trehalose, sorbitol or sucrose were not all intact even after 1 month storage at the temperatures tested. In addition, we showed that VLPs stored under these conditions were able to be frozen and re-thawed twice before showing changes in their appearance. Conclusions Although the inclusion of other analytical tools are essential to validate these preliminary findings, storage in 15% trehalose at -70[degree sign]C for 12 months is most effective in retaining VLP stability.
Resumo:
Background: HIV-1 Gag virus like particles (VLPs) used as candidate vaccines are regarded as inert particles as they contain no replicative nucleic acid, although they do encapsidate cellular RNAs. During HIV-1 Gag VLP production in baculovirus-based expression systems, VLPs incorporate the baculovirus Gp64 envelope glycoprotein, which facilitates their entry into mammalian cells. This suggests that HIV-1 Gag VLPs produced using this system facilitate uptake and subsequent expression of encapsidated RNA in mammalian cells - an unfavourable characteristic for a vaccine. Methods. HIV-1 Gag VLPs encapsidating reporter chloramphenicol acetyl transferase (CAT) RNA, were made in insect cells using the baculovirus expression system. The presence of Gp64 on the VLPs was verified by western blotting and RT-PCR used to detect and quantitate encapsidated CAT RNA. VLP samples were heated to inactivate CAT RNA. Unheated and heated VLPs incubated with selected mammalian cell lines and cell lysates tested for the presence of CAT protein by ELISA. Mice were inoculated with heated and unheated VLPs using a DNA prime VLP boost regimen. Results: HIV-1 Gag VLPs produced had significantly high levels of Gp64 (∼1650 Gp64 molecules/VLP) on their surfaces. The amount of encapsidated CAT RNA/g Gag VLPs ranged between 0.1 to 7 ng. CAT protein was detected in 3 of the 4 mammalian cell lines incubated with VLPs. Incubation with heated VLPs resulted in BHK-21 and HeLa cell lysates showing reduced CAT protein levels compared with unheated VLPs and HEK-293 cells. Mice inoculated with a DNA prime VLP boost regimen developed Gag CD8 and CD4 T cell responses to GagCAT VLPs which also boosted a primary DNA response. Heating VLPs did not abrogate these immune responses but enhanced the Gag CD4 T cell responses by two-fold. Conclusions: Baculovirus-produced HIV-1 Gag VLPs encapsidating CAT RNA were taken up by selected mammalian cell lines. The presence of CAT protein indicates that encapsidated RNA was expressed in the mammalian cells. Heat-treatment of the VLPs altered the ability of protein to be expressed in some cell lines tested but did not affect the ability of the VLPs to stimulate an immune response when inoculated into mice. © 2011 Valley-Omar et al; licensee BioMed Central Ltd.
Resumo:
Background During a global influenza pandemic, the vaccine requirements of developing countries can surpass their supply capabilities, if these exist at all, compelling them to rely on developed countries for stocks that may not be available in time. There is thus a need for developing countries in general to produce their own pandemic and possibly seasonal influenza vaccines. Here we describe the development of a plant-based platform for producing influenza vaccines locally, in South Africa. Plant-produced influenza vaccine candidates are quicker to develop and potentially cheaper than egg-produced influenza vaccines, and their production can be rapidly upscaled. In this study, we investigated the feasibility of producing a vaccine to the highly pathogenic avian influenza A subtype H5N1 virus, the most generally virulent influenza virus identified to date. Two variants of the haemagglutinin (HA) surface glycoprotein gene were synthesised for optimum expression in plants: these were the full-length HA gene (H5) and a truncated form lacking the transmembrane domain (H5tr). The genes were cloned into a panel of Agrobacterium tumefaciens binary plant expression vectors in order to test HA accumulation in different cell compartments. The constructs were transiently expressed in tobacco by means of agroinfiltration. Stable transgenic tobacco plants were also generated to provide seed for stable storage of the material as a pre-pandemic strategy. Results For both transient and transgenic expression systems the highest accumulation of full-length H5 protein occurred in the apoplastic spaces, while the highest accumulation of H5tr was in the endoplasmic reticulum. The H5 proteins were produced at relatively high concentrations in both systems. Following partial purification, haemagglutination and haemagglutination inhibition tests indicated that the conformation of the plant-produced HA variants was correct and the proteins were functional. The immunisation of chickens and mice with the candidate vaccines elicited HA-specific antibody responses. Conclusions We managed, after synthesis of two versions of a single gene, to produce by transient and transgenic expression in plants, two variants of a highly pathogenic avian influenza virus HA protein which could have vaccine potential. This is a proof of principle of the potential of plant-produced influenza vaccines as a feasible pandemic response strategy for South Africa and other developing countries.
Resumo:
The family Geminiviridae comprises a group of plant-infecting circular ssDNA viruses that severely constrain agricultural production throughout the temperate regions of the world, and are a particularly serious threat to food security in sub-Saharan Africa. While geminiviruses exhibit considerable diversity in terms of their nucleotide sequences, genome structures, host ranges and insect vectors, the best characterised and economically most important of these viruses are those in the genus Begomovirus. Whereas begomoviruses are generally considered to be either monopartite (one ssDNA component) or bipartite (two circular ssDNA components called DNA-A and DNA-B), many apparently monopartite begomoviruses are associated with additional subviral ssDNA satellite components, called alpha- (DNA-αs) or betasatellites (DNA-βs). Additionally, subgenomic molecules, also known as defective interfering (DIs) DNAs that are usually derived from the parent helper virus through deletions of parts of its genome, are also associated with bipartite and monopartite begomoviruses. The past three decades have witnessed the emergence and diversification of various new begomoviral species and associated DI DNAs, in southern Africa, East Africa, and proximal Indian Ocean islands, which today threaten important vegetable and commercial crops such as, tobacco, cassava, tomato, sweet potato, and beans. This review aims to describe what is known about these viruses and their impacts on sustainable production in this sensitive region of the world. © 2012 by the authors licensee MDPI, Basel, Switzerland.
Resumo:
Circoviruses lack an autonomous DNA polymerase and are dependent on the replication machinery of the host cell for de novo DNA synthesis. Accordingly, the viral DNA needs to cross both the plasma membrane and the nuclear envelope before replication can occur. Here we report on the subcellular distribution of the beak and feather disease virus (BFDV) capsid protein (CP) and replication-associated protein (Rep) expressed via recombinant baculoviruses in an insect cell system and test the hypothesis that the CP is responsible for transporting the viral genome, as well as Rep, across the nuclear envelope. The intracellular localization of the BFDV CP was found to be directed by three partially overlapping bipartite nuclear localization signals (NLSs) situated between residues 16 and 56 at the N terminus of the protein. Moreover, a DNA binding region was also mapped to the N terminus of the protein and falls within the region containing the three putative NLSs. The ability of CP to bind DNA, coupled with the karyophilic nature of this protein, strongly suggests that it may be responsible for nuclear targeting of the viral genome. Interestingly, whereas Rep expressed on its own in insect cells is restricted to the cytoplasm, coexpression with CP alters the subcellular localization of Rep to the nucleus, strongly suggesting that an interaction with CP facilitates movement of Rep into the nucleus. Copyright © 2006, American Society for Microbiology. All Rights Reserved.
Resumo:
Infection with high-risk human papillomaviruses (HPVs) is an essential step in the multistep process leading to cervical cancer. There are approximately 120 different types of HPV identified: of these, 18 are high-risk types associated with cervical cancer, with HPV-16 being the dominant type in most parts of the world. The major capsid protein of papillomavirus, produced in a number of expression systems, self assembles to form virus-like particles. Virus-like particles are the basis of the first generation of HPV vaccines presently being tested in clinical trials. Virus-like particles are highly immunogenic and afford protection from infection both in animal models and in Phase IIb clinical trials. A number of Phase III trials are in progress to determine if the vaccine will protect against cervical disease and, in some cases, genital warts. However, it is predicted that these vaccines will be too expensive for the developing world, where they are desperately needed. Another problem is that they will be type specific. Novel approaches to the production of virus-like particles in plants, second-generation vaccine approaches including viral and bacterial vaccine vectors and DNA vaccines, as well as different routes of immunization, are also reviewed. © 2005 Future Drugs Ltd.
Resumo:
We used in vivo (biological), in silico (computational structure prediction), and in vitro (model sequence folding) analyses of single-stranded DNA sequences to show that nucleic acid folding conservation is the selective principle behind a high-frequency single-nucleotide reversion observed in a three-nucleotide mutated motif of the Maize streak virus replication associated protein (Rep) gene. In silico and in vitro studies showed that the three-nucleotide mutation adversely affected Rep nucleic acid folding, and that the single-nucleotide reversion [C(601)A] restored wild-type-like folding. In vivo support came from infecting maize with mutant viruses: those with Rep genes containing nucleotide changes predicted to restore a wild-type-like fold [A(601)/G(601)] preferentially accumulated over those predicted to fold differently [C(601)/T(601)], which frequently reverted to A(601) and displaced the original population. We propose that the selection of native nucleic acid folding is an epigenetic effect, which might have broad implications in the evolution of plants and their viruses.
Resumo:
The "AIDS Vaccine 2008" Conference was held in Cape Town, South Africa (October 13 to 16, 2008) and organized, under the aegis of the Global HIV Vaccine Enterprise, by Dr. Lynn Morris (Chair of the Conference) National Institute of Communicable Diseases; Dr. Koleka Mlisana from CAPRISA, University KwaZulu-Natal, Durban, Dr. Glenda Gray from Perinatal HIV Research Unit, University Witwatersrand, Johannesburg and Dr. Carolyn Williamson from Institute of Infectious Diseses. and Molecular Medicine, UCT, Cape Town (Co-Chairs of the Conference). Since the first AIDS Vaccine conference, organized in Paris in 2000, this was the first time it was held outside of the U.S. and Europe, and involved nearly 1,000 participants. Besides three Plenary Sessions with ten state-of-the-art plenary lectures and one Keynote Lecture given by Dr. A.S. Fauci (Director of NIAID, NIH, USA), the Conference was organized in nine oral sessions, four poster discussion groups covering a wide spectrum of scientific information relating to HIV vaccine research and development. Moreover three Symposia, two Special Sessions, one Roundtable as well as two Debates were held, the latter focusing on current controversial topics. The conference opening was memorable for a number of reasons: among these was the presence of South Africa's new Minister of Health, Barbara Hogan who, in her first speech in a major forum as a senior member of the SA Government, affirmed that HIV causes AIDS, and that the search for a vaccine is of paramount importance to SA and the rest of the world. A scientific summary of the Conference is reported in the present article, divided into four major topics: (1) vaccine concepts and design; (2) T-cell immunology and innate immunity; (3) B-cell immunology, neutralizing antibodies and mucosal immunology; and (4) clinical trials. © 2009 Landes Bioscience.
Resumo:
Several approaches have been explored to eradicate HIV; however, a multigene vaccine appears to be the best option, given their proven potential to elicit broad, effective responses in animal models. The Pr55 Gagprotein is an excellent vaccine candidate in its own right, given that it can assemble into large, enveloped, virus-like particles (VLPs) which are highly immunogenic, and can moreover be used as a scaffold for the presentation of other large non-structural HIV antigens. In this study, we evaluated the potential of two novel chimaeric HIV-1 Pr55 Gag-based VLP constructs - C-terminal fusions with reverse transcriptase and a Tat::Nef fusion protein, designated GagRT and GagTN respectively - to enhance a cellular response in mice when used as boost components in two types of heterologous prime-boost vaccine strategies. A vaccine regimen consisting of a DNA prime and chimaeric HIV-1 VLP boosts in mice induced strong, broad cellular immune responses at an optimum dose of 100 ng VLPs. The enhanced cellular responses induced by the DNA prime-VLP boost were two- to three-fold greater than two DNA vaccinations. Moreover, a mixture of GagRT and GagTN VLPs also boosted antigen-specific CD8+ and CD4+ T-cell responses, while VLP vaccinations only induced predominantly robust Gag CD4+ T-cell responses. The results demonstrate the promising potential of these chimaeric VLPs as vaccine candidates against HIV-1. © 2010 Pillay et al; licensee BioMed Central Ltd.
Resumo:
The review details the development of the Subunit Vaccine Group at the University of Cape Town, from its beginnings as a plant virology laboratory in the 1980s. The investigation and development of Human papillomavirus (HPV) and Human immunodeficiency vaccine candidates are covered in detail, with an emphasis on how this work allowed the evolution of a systematic approach to the optimisation of expression of these and other proteins especially in plants, but also in insect cell culture. We discuss various insights gained during our work, such as approaches to codon optimisation, use of different vector systems and plant hosts, intracellular targetting and gene modification. The future prospects for both our work and for the field of plant-made vaccines in general, are discussed. © 2011 Landes Bioscience.
Resumo:
Purpose – The purpose of this paper is to examine the quality of service of a South East Asian country's military facilities management organisation. Design/methodology/approach – An interview survey and questionnaire survey were used to obtain a description and summary of stakeholders’ expectations and the extent to which they were being satisfied by the services provided. Findings – The method provides a useful means of identifying and prioritising varying expectations between stakeholder groups and of indicating any mismatch in expectations in the management of military facilities. Social implications – The development and use of a method to test and improve the effectiveness and efficiency of the management of military facilities helps in providing better value for money. Originality/value – In addition to re-affirming Parasuraman's overall dimensions of service expectation, the empirical summary of the stakeholders’ expectations obtained in this way is of practical value for the service provider in developing a strategy for expectation management. For the case studied, it is also apparent that although the current processes in service delivery are well understood by all involved stakeholders, there is a need for further improvement with regards to their expectation levels. It is also one of the very few reported studies on the management of military facilities.
Resumo:
There remains a substantial shortfall in treatment of severe skeletal injuries. The current gold standard of autologous bone grafting from the same patient, has many undesirable side effects associated such as donor site morbidity. Tissue engineering seeks to offer a solution to this problem. The primary requirements for tissue engineered scaffolds have already been well established, and many materials, such as polyesters, present themselves as potential candidates for bone defects; they have comparable structural features, but they often lack the required osteoconductivity to promote adequate bone regeneration. By combining these materials with biological growth factors; which promote the infiltration of cells into the scaffold as well as the differentiation into the specific cell and tissue type, it is possible to increase the formation of new bone. However cost and potential complications associated with growth factors means controlled release is an important consideration in the design of new bone tissue engineering strategies. This review will cover recent research in the area of encapsulation and release of growth factors within a variety of different polymeric scaffolds.
Resumo:
Emergency health is a critical component of Australia’s health system and one which is increasingly congested from growing demand and blocked access to inpatient beds. The Emergency Health Services Queensland (EHSQ) study aims to identify the factors driving increased demand for emergency health and to evaluate strategies which may safely reduce the future demand growth. This monograph addresses the characteristics of users of emergency health services with an aim to identify those that appear to contribute to demand growth. This study utilises data on patients treated by Emergency Departments (ED) and Queensland Ambulance Service (QAS) across Queensland. ED data was derived from the Emergency Department Information System (EDIS) for the period 2001-02 through to 2010-11. Ambulance data was extracted from the QAS’ Ambulance Information Management System (AIMS) and electronic Ambulance Report Form (eARF) for the period 2001-02 through to 2009-10. Due to discrepancies and comparability issues for ED data, this monograph compares data from the 2003-04 time period with 2010-11 data for 21 of the reporting EDs. Also a snapshot of users for the 2010-11 financial year for 31 reporting EDs is used to describe the characteristics of users and to compare those characteristics with population demographics. For QAS data, the 2002-03 and 2009-10 time periods were selected for detailed analyses to identify trends. • Demand for emergency health care services is increasing, representing both increased population and increased relative utilisation. Per capita demand for ED attention has increased by 2% per annum over the last decade and for ambulance attention by 3.7% per annum. • The growth in ED demand is prominent in more urgent triage categories with actual decline in less urgent patients. An estimated 55% of patients attend hospital EDs outside of normal working hours. There is no evidence that patients presenting out of hours are significantly different to those presenting within working hours; they have similar triage assessments and outcomes. • Patients suffering from injuries and poisoning comprise 28% of the ED workload (an increase of 65% in the study period), whilst declines of 32% in cardiovascular and circulatory conditions, and musculoskeletal problems have been observed. • 25.6% of patients attending EDs are admitted to hospital. 19% of admitted patients and 7% of patients who die in the ED are triage category 4 or 5 on arrival. • The average age of ED patients is 35.6 years. Demand has grown in all age groups and amongst both men and women. Men have higher utilisation rates for ED in all age groups. The only group where the growth rate in women has exceeded men is in the 20-29 age group; this growth is particularly in the injury and poisoning categories. • Considerable attention has been paid publicly to ED performance criteria. It is worth noting that 50% of all patients were treated within 33 minutes of arrival. • Patients from lower socioeconomic areas appear to have higher utilisation rates and the utilisation rate for indigenous people appears to exceed those of European and other backgrounds. The utilisation rates for immigrant people is generally less than that of Australian born however it has not been possible to eliminate the confounding impact of different age and socioeconomic profiles. • Demand for ambulance service is also increasing at a rate that exceeds population growth. Utilisation rates have increased by an average of 5% per annum in Queensland compared to 3.6% nationally, and the utilisation rate in Queensland is 27% higher than the national average. • The growth in ambulance utilisation has also been amongst the more urgent categories of dispatch and utilisation rates are higher in rural and regional areas than in the metropolitan area. The demand for ambulance increases with age but the growth in demand for ambulance service has been more prominent in younger age groups. These findings contribute significantly to an understanding of the growth in demand for emergency health. It shows that the growth is amongst patients in genuine need of emergency healthcare and public rhetoric that the congestion of emergency health services is due to inappropriate attendees is unable to be substantiated. The consistency of the growth in demand over the last decade reflects not only the changing demographics of the Australian population but also the changes in health status, standards of acute health care and other social factors. The growth is also amongst patients with acute injury and poisoning which is inconsistent with rates of chronic disease as a fundamental driver. We have also interviewed patients in regard to their decision making choices for acute health care and the factors that influence these decisions and this will be the subject of a third Monograph and publications.
Resumo:
The DNA damage response encompasses a complex series of signaling pathways that function to regulate and facilitate the repair of damaged DNA. Recent studies have shown that the repair of transcriptionally inactive chromatin, named heterochromatin, is dependent upon the phosphorylation of the co-repressor, Krüppel-associated box (KRAB) domain-associated protein (KAP-1), by the ataxia telangiectasia-mutated (ATM) kinase. Co-repressors, such as KAP-1, function to regulate the rigid structure of heterochromatin by recruiting histone-modifying enzymes, such HDAC1/2, SETDB1, and nucleosome-remodeling complexes such as CHD3. Here, we have characterized a phosphorylation site in the HP1-binding domain of KAP-1, Ser-473, which is phosphorylated by the cell cycle checkpoint kinase Chk2. Expression of a nonphosphorylatable S473A mutant conferred cellular sensitivity to DNA-damaging agents and led to defective repair of DNA double-strand breaks in heterochromatin. In addition, cells expressing S473A also displayed defective mobilization of the HP1-β chromodomain protein. The DNA repair defect observed in cells expressing S473A was alleviated by depletion of HP1-β, suggesting that phosphorylation of KAP-1 on Ser-473 promotes the mobilization of HP1-β from heterochromatin and subsequent DNA repair. These results suggest a novel mechanism of KAP-1-mediated chromatin restructuring via Chk2-regulated HP1-β exchange from heterochromatin, promoting DNA repair.