184 resultados para DNA helix


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the century since the description of the orthoclad genus Paratrichocladius Santos-Abreu (Diptera: Chironomidae), separation in any life stage from the cosmopolitan, diverse Cricotopus Wulp has been problematic. Molecular analysis reveals the presence of two species in Australia that conform in morphology to Paratrichocladius and which form a well-supported clade including Paratrichocladius micans (Kieffer) from Africa and a distinct southern African larva. This clade clusters with taxa allied with Cricotopus albitibia (Walker), in turn nested within all other sampled Australian Cricotopus. Relevant nodes strongly support Cricotopus as nonmonophyletic without inclusion of Paratrichocladius. We synonymize Paratrichocladius with Cricotopus syn.n, treating Paratrichocladius as a subgenus. Cricotopus (Paratrichocladius) australiensis Cranston sp.n. is described for Trichocladius pluriserialis Freeman from Australia, which is not the same species under that name in New Zealand. Cricotopus (Paratrichocladius) bifenestrus Cranston sp.n. from Australia is described, also in all life stages. The many new combinations, listed in an Appendix, include three replacement names for new secondary homonyms, namely: Cricotopus (Paratrichocladius) sinobicinctus Cranston & Krosch nom.n. for Paratrichocladius bicinctus Fu, Sæther & Wang, Cricotopus draysoni Cranston & Krosch nom.n. for Cricotopus brevicornis Drayson, Krosch & Cranston, and Cricotopus (Paratrichocladius) sikhotealinus Makarchenko & Makarchenko nom.n. for Cricotopus orientalis Kieffer. We conclude with comments on wider issues in the taxonomy of Paratrichocladius, especially concerning New Zealand species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Segmentation defects of the vertebrae (SDV) are caused by aberrant somite formation during embryogenesis and result in irregular formation of the vertebrae and ribs. The Notch signal transduction pathway plays a critical role in somite formation and patterning in model vertebrates. In humans, mutations in several genes involved in the Notch pathway are associated with SDV, with both autosomal recessive (MESP2, DLL3, LFNG, HES7) and autosomal dominant (TBX6) inheritance. However, many individuals with SDV do not carry mutations in these genes. Using whole-exome capture and massive parallel sequencing, we identified compound heterozygous mutations in RIPPLY2 in two brothers with multiple regional SDV, with appropriate familial segregation. One novel mutation (c.A238T:p.Arg80*) introduces a premature stop codon. In transiently transfected C2C12 mouse myoblasts, the RIPPLY2 mutant protein demonstrated impaired transcriptional repression activity compared with wild-type RIPPLY2 despite similar levels of expression. The other mutation (c.240-4T>G), with minor allele frequency <0.002, lies in the highly conserved splice site consensus sequence 5' to the terminal exon. Ripply2 has a well-established role in somitogenesis and vertebral column formation, interacting at both gene and protein levels with SDV-associated Mesp2 and Tbx6. We conclude that compound heterozygous mutations in RIPPLY2 are associated with SDV, a new gene for this condition. © The Author 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Multiple sclerosis (MS) is thought to be a T cell-mediated autoimmune disorder. MS pathogenesis is likely due to a genetic predisposition triggered by a variety of environmental factors. Epigenetics, particularly DNA methylation, provide a logical interface for environmental factors to influence the genome. In this study we aim to identify DNA methylation changes associated with MS in CD8+ T cells in 30 relapsing remitting MS patients and 28 healthy blood donors using Illumina 450K methylation arrays. Findings Seventy-nine differentially methylated CpGs were associated with MS. The methylation profile of CD8+ T cells was distinctive from our previously published data on CD4+ T cells in the same cohort. Most notably, there was no major CpG effect at the MS risk gene HLA-DRB1 locus in the CD8+ T cells. Conclusion CD8+ T cells and CD4+ T cells have distinct DNA methylation profiles. This case–control study highlights the importance of distinctive cell subtypes when investigating epigenetic changes in MS and other complex diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epigenetics is the study of heritable changes in gene expression that are not the result of genetic alterations. These changes include DNA methylation, histone modifications, or indeed microRNA expression. Chromatin is a tightly compacted DNA–protein complex that allows approximately two meters of DNA to be packaged inside a cell, only a few micrometers across. Although the resulting DNA structure is very stable, it is not very amiable to DNA-dependent processes, so mechanisms have to exist to allow processes such as transcription, replication, and DNA repair to occur. This chapter will look at how a cell responds to and deals with genomic instability at the epigenetic level and highlight how critical chromatin remodeling is for correct DNA repair and cell survival following DNA damage. This chapter will initially look at the DNA repair pathways that function in human cells and then at how the repair of DNA damage is controlled by epigenetics.