940 resultados para Bus Design.
Resumo:
Early in the practice-led research debate, Steven Scrivener (2000, 2002) identified some general differences in the approach of artists and designers undertaking postgraduate research. His distinctions centered on the role of the artefact in problem-based research (associated with design) and creative-production research (associated with artistic practice). Nonetheless, in broader discussions on practice-led research, 'art and design' often continues to be conflated within a single term. In particular, marked differences between art and design methodologies, theoretical framing, research goals and research claims have been underestimated. This paper revisits Scrivener's work and establishes further distinctions between art and design research. It is informed by our own experiences of postgraduate supervision and research methods training, and an empirical study of over sixty postgraduate, practice-led projects completed at the Creative Industries Faculty of QUT between 2002 and 2008. Our reflections have led us to propose that artists and designers work with differing research goals (the evocative and the effective, respectively), which are played out in the questions asked, the creative process, the role of the artefact and the way new knowledge is evidenced. Of course, research projects will have their own idiosyncrasies but, we argue, marking out the poles at each end of the spectrum of art and design provides useful insights for postgraduate candidates, supervisors and methodologists alike.
Resumo:
Service-orientation has gained widespread acceptance and is increasingly being employed as a paradigm for structuring both business and IT architectures. An earlier study of extant service analysis and design methodologies discovered a need for holistic approaches that equally account for both business and software services, which motivated the design of a new, consolidated service analysis and design methodology. A challenge in design-oriented research is to evaluate the utility of the newly created artefacts (here: the methodology), as they are often intended to become part of complex socio-technical systems. Therefore, after presenting a brief overview of the consolidated methodology, the paper discusses possible approaches for the “evaluate” phase of this design-science research process and presents the results of an empirical evaluation conducted in an Action Research study at one of Australia’s largest financial services providers.
Resumo:
Until recently, the hot-rolled steel members have been recognized as the most popular and widely used steel group, but in recent times, the use of cold-formed high strength steel members has rapidly increased. However, the structural behavior of light gauge high strength cold-formed steel members characterized by various buckling modes is not yet fully understood. The current cold-formed steel sections such as C- and Z-sections are commonly used because of their simple forming procedures and easy connections, but they suffer from certain buckling modes. It is therefore important that these buckling modes are either delayed or eliminated to increase the ultimate capacity of these members. This research is therefore aimed at developing a new cold-formed steel beam with two torsionally rigid rectangular hollow flanges and a slender web formed using intermittent screw fastening to enhance the flexural capacity while maintaining a minimum fabrication cost. This thesis describes a detailed investigation into the structural behavior of this new Rectangular Hollow Flange Beam (RHFB), subjected to flexural action The first phase of this research included experimental investigations using thirty full scale lateral buckling tests and twenty two section moment capacity tests using specially designed test rigs to simulate the required loading and support conditions. A detailed description of the experimental methods, RHFB failure modes including local, lateral distortional and lateral torsional buckling modes, and moment capacity results is presented. A comparison of experimental results with the predictions from the current design rules and other design methods is also given. The second phase of this research involved a methodical and comprehensive investigation aimed at widening the scope of finite element analysis to investigate the buckling and ultimate failure behaviours of RHFBs subjected to flexural actions. Accurate finite element models simulating the physical conditions of both lateral buckling and section moment capacity tests were developed. Comparison of experimental and finite element analysis results showed that the buckling and ultimate failure behaviour of RHFBs can be simulated well using appropriate finite element models. Finite element models simulating ideal simply supported boundary conditions and a uniform moment loading were also developed in order to use in a detailed parametric study. The parametric study results were used to review the current design rules and to develop new design formulae for RHFBs subjected to local, lateral distortional and lateral torsional buckling effects. Finite element analysis results indicate that the discontinuity due to screw fastening has a noticeable influence only for members in the intermediate slenderness region. Investigations into different combinations of thicknesses in the flange and web indicate that increasing the flange thickness is more effective than web thickness in enhancing the flexural capacity of RHFBs. The current steel design standards, AS 4100 (1998) and AS/NZS 4600 (1996) are found sufficient to predict the section moment capacity of RHFBs. However, the results indicate that the AS/NZS 4600 is more accurate for slender sections whereas AS 4100 is more accurate for compact sections. The finite element analysis results further indicate that the current design rules given in AS/NZS 4600 is adequate in predicting the member moment capacity of RHFBs subject to lateral torsional buckling effects. However, they were inadequate in predicting the capacities of RHFBs subject to lateral distortional buckling effects. This thesis has therefore developed a new design formula to predict the lateral distortional buckling strength of RHFBs. Overall, this thesis has demonstrated that the innovative RHFB sections can perform well as economically and structurally efficient flexural members. Structural engineers and designers should make use of the new design rules and the validated existing design rules to design the most optimum RHFB sections depending on the type of applications. Intermittent screw fastening method has also been shown to be structurally adequate that also minimises the fabrication cost. Product manufacturers and builders should be able to make use of this in their applications.
Resumo:
This paper presents the design of self-tuning controllers for a two terminal HVDC link. The controllers are designed utilizing a novel discrete-time converter model based on multirate sampling. The nature of converter firing system necessitates the development of a two-step ahead self-tuning control strategy. A two terminal HVDC system study has been carried out to show the effectiveness of the control strategies proposed which include the design of minimum variance controller, pole assigned controller and PLQG controller. The coordinated control of a two terminal HVDC system has been established deriving the signal from inverter end current and voltage which has been estimated based on the measurements of rectifier end quantities only realized through the robust reduced order observer. A well known scaled down sample system data has been selected for studies and the controllers designed have been tested for worst conditions. The performance of self-tuning controllers has been evaluated through digital simulation.
Resumo:
One of the new challenges in aeronautics is combining and accounting for multiple disciplines while considering uncertainties or variability in the design parameters or operating conditions. This paper describes a methodology for robust multidisciplinary design optimisation when there is uncertainty in the operating conditions. The methodology, which is based on canonical evolution algorithms, is enhanced by its coupling with an uncertainty analysis technique. The paper illustrates the use of this methodology on two practical test cases related to Unmanned Aerial Systems (UAS). These are the ideal candidates due to the multi-physics involved and the variability of missions to be performed. Results obtained from the optimisation show that the method is effective to find useful Pareto non-dominated solutions and demonstrate the use of robust design techniques.
Resumo:
This paper considers some of the implications of the rise of design as a master-metaphor of the information age. It compares the terms 'interaction design' and 'mass communication', suggesting that both can be seen as a contradiction in terms, inappropriately preserving an industrial-age division between producers and consumers. With the shift from mass media to interactive media, semiotic and political power seems to be shifting too - from media producers to designers. This paper argues that it is important for the new discipline of 'interactive design' not to fall into habits of thought inherited from the 'mass' industrial era. Instead it argues for the significance, for designers and producers alike, of what I call 'distributed expertise' -including social network markets, a DIY-culture, user-led innovation, consumer co-created content, and the use of Web 2.0 affordances for social, scientific and creative purposes as well as for entertainment. It considers the importance of the growth of 'distributed expertise' as part of a new paradigm in the growth of knowledge, which has 'evolved' through a number of phases, from 'abstraction' to 'representation', to 'productivity'. In the context of technologically mediated popular participation in the growth of knowledge and social relationships, the paper argues that design and media-production professions need to cross rather than to maintain the gap between experts and everyone else, enabling all the agents in the system to navigate the shift into the paradigm of mass productivity.
Resumo:
This paper explores a method of comparative analysis and classification of data through perceived design affordances. Included is discussion about the musical potential of data forms that are derived through eco-structural analysis of musical features inherent in audio recordings of natural sounds. A system of classification of these forms is proposed based on their structural contours. The classifications include four primitive types; steady, iterative, unstable and impulse. The classification extends previous taxonomies used to describe the gestural morphology of sound. The methods presented are used to provide compositional support for eco-structuralism.
Resumo:
Network Jamming systems provide real-time collaborative performance experiences for novice or inexperienced users. In this paper we will outline the interaction design considerations that have emerged during through evolutionary development cycles of the jam2jam Network Jamming software that employs generative techniques that require particular attention to the human computer relationship. In particular we describe the co-evolution of features and uses, explore the role of agile development methods in supporting this evolution, and show how the provision of a clear core capability can be matched with options for enhanced features support multi-levelled user experience and skill develop.
Resumo:
The importance of student engagement to higher education quality, making deep learning outcomes possible for students, and achieving student retention, is increasingly being understood. The issue of student engagement in the first year of tertiary study is of particular significance. This paper takes the position that the first year curriculum, and the pedagogical principles that inform its design, are critical influencers of student engagement in the first year learning environment. We use an analysis of case studies prepared for Kift’s ALTC Senior Fellowship to demonstrate ways in which student engagement in the first year of tertiary study can be successfully supported through intentional curriculum design that motivates students to learn, provides a positive learning climate, and encourages students to be active in their learning.
Resumo:
Surveillance for invasive non-indigenous species (NIS) is an integral part of a quarantine system. Estimating the efficiency of a surveillance strategy relies on many uncertain parameters estimated by experts, such as the efficiency of its components in face of the specific NIS, the ability of the NIS to inhabit different environments, and so on. Due to the importance of detecting an invasive NIS within a critical period of time, it is crucial that these uncertainties be accounted for in the design of the surveillance system. We formulate a detection model that takes into account, in addition to structured sampling for incursive NIS, incidental detection by untrained workers. We use info-gap theory for satisficing (not minimizing) the probability of detection, while at the same time maximizing the robustness to uncertainty. We demonstrate the trade-off between robustness to uncertainty, and an increase in the required probability of detection. An empirical example based on the detection of Pheidole megacephala on Barrow Island demonstrates the use of info-gap analysis to select a surveillance strategy.
Resumo:
We consider the problem of designing a surveillance system to detect a broad range of invasive species across a heterogeneous sampling frame. We present a model to detect a range of invertebrate invasives whilst addressing the challenges of multiple data sources, stratifying for differential risk, managing labour costs and providing sufficient power of detection.We determine the number of detection devices required and their allocation across the landscape within limiting resource constraints. The resulting plan will lead to reduced financial and ecological costs and an optimal surveillance system.
Resumo:
This research reports on a project concerned with the relationship between the person and the environment in the context of achieving a contemplative or existential state – a state which can be experienced either consciously or subconsciously. The need for such a study originated with the desire to contribute to the design of multicultural spaces which could be used for a range of activities within the public and the personal arena, activities including contemplation, meditation and prayer. The concept of ‘sacred’ is explored in the literature review and in primary interviews with the participants of this study. Given that the word ‘sacred’ is highly value-laden and potentially alienating for some people, it was decided to use the more accessible term ‘contemplative’. The outcomes of the study inform the practice of interior design and architecture which tends currently to neglect the potential for all spaces to be existentially meaningful. Informed by phenomenological methodology, data were collected from a diverse group of people, using photo-elicitation and interviews. The technique of photo-elicitation proved to be highly effective in helping people reveal their everyday lived experience of contemplative spaces. Reflective analysis (Van Manen 2000) was used to explore the data collected. The initial stage of analysis produced three categories of data: varying conceptions of contemplation, aspects of the person involved in the contemplation, and aspects of environment involved in contemplation. From this, it was found that achieving a state of contemplation involves both the person and the environment in a dialectic process of unfolding. The unfolding has various physical, psycho-social, and existential dimensions or qualities which operate sequentially and simultaneously. Two concepts emerged as being central to unfolding: ‘Cleansing’ and ‘Nothingness’. Unfolding is found to comprise the Core; Distinction; Manifestation; Cleansing; Creation; and Sharing. This has a parallel with Mircea Eliade’s (1959) definition of sacred as something that manifests itself as different from the profane. The power of design, re-contextualization through utility and purpose, and the existential engagements between the person and environment are used as a basis for establishing the potential contribution of the study to interior design. In this way, the study makes a contribution to our understanding of how space and its elements inspire, support and sustain person environment interaction – particularly at the existential level – as well as to our understanding of the multi-dimensional and holistic nature of this interaction. In addition, it points to the need for a phenomenological re-conceptualisation of the design/client relationship. In summary, the contributions of this research are: the exploration of contemplative experience as sacred experience; an understanding of the design of space as creating engagement between person and environment; a rationale for the introduction of a phenomenological approach to the relationship between designer and clients; and raising awareness of the spiritual in a holistic approach to design.
Resumo:
As user involvement becomes a necessary part of the product development process, various ways of accessing users' latent needs have been developed and studied. Reviews of literatures in user involvement and product development have revealed that accessing users' latent needs and transferring them into design process could be facilitated by effectively implementing user-designer collaboration during the early stage of the design process. In this paper, various types of user-designer collaboration were observed and then distinct characteristics of user-designer collaboration were classified into three categories. 1) Passive objectivity, 2) workplace democratisation, and 3) shared contexts were observed as strategies for better user-designer collaboration, which have been employed in the area of user-centred design, user participatory design and design for experiencing. Based on the literature review, this paper proposed a basic collaboration mechanism between the users and the designers during the early stage of the design process and then discussed how its mechanism will help to describe the interactions between the users and the designers during the user involvement sessions.
Resumo:
The new cold-formed LiteSteel beam (LSB) sections have found increasing popularity in residential, industrial and commercial buildings due to their lightweight and cost-effectiveness. They have the beneficial characteristics of including torsionally rigid rectangular flanges combined with economical fabrication processes. Currently there is significant interest in using LSB sections as flexural members in floor joist systems. When used as floor joists, the LSB sections require holes in the web to provide access for inspection and various services. But there are no design methods that provide accurate predictions of the moment capacities of LSBs with web holes. In this study, the buckling and ultimate strength behaviour of LSB flexural members with web holes was investigated in detail by using a detailed parametric study based on finite element analyses with an aim to develop appropriate design rules and recommendations for the safe design of LSB floor joists. Moment capacity curves were obtained using finite element analyses including all the significant behavioural effects affecting their ultimate member capacity. The parametric study produced the required moment capacity curves of LSB section with a range of web hole combinations and spans. A suitable design method for predicting the ultimate moment capacity of LSB with web holes was finally developed. This paper presents the details of this investigation and the results
Resumo:
We describe the design and evaluation of a platform for networks of cameras in low-bandwidth, low-power sensor networks. In our work to date we have investigated two different DSP hardware/software platforms for undertaking the tasks of compression and object detection and tracking. We compare the relative merits of each of the hardware and software platforms in terms of both performance and energy consumption. Finally we discuss what we believe are the ongoing research questions for image processing in WSNs.