531 resultados para Algorithmic Probability


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents techniques which can be viewed as pre-processing step towards diagnosis of faults in a small size multi-cylinder diesel engine. Preliminary analysis of the acoustic emission (AE) signals is outlined, including time-frequency analysis, selection of optimum frequency band. Some results of applying mean field independent component analysis (MFICA) to separate the AE root mean square (RMS) signals are also outlined. The results on separation of RMS signals show this technique has the potential of increasing the probability to successfully identify the AE events associated with the various mechanical events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: Diarrhoea in the enterally tube fed (ETF) intensive care unit (ICU) patient is a multifactorial problem. Diarrhoeal aetiologies in this patient cohort remain debatable; however, the consequences of diarrhoea have been well established and include electrolyte imbalance, dehydration, bacterial translocation, peri anal wound contamination and sleep deprivation. This study examined the incidence of diarrhoea and explored factors contributing to the development of diarrhoea in the ETF, critically ill, adult patient. ---------- Method: After institutional ethical review and approval, a single centre medical chart audit was undertaken to examine the incidence of diarrhoea in ETF, critically ill patients. Retrospective, non-probability sequential sampling was used of all emergency admission adult ICU patients who met the inclusion/exclusion criteria. ---------- Results: Fifty patients were audited. Faecal frequency, consistency and quantity were considered important criteria in defining ETF diarrhoea. The incidence of diarrhoea was 78%. Total patient diarrhoea days (r = 0.422; p = 0.02) and total diarrhoea frequency (r = 0.313; p = 0.027) increased when the patient was ETF for longer periods of time. Increased severity of illness, peripheral oxygen saturation (Sp02), glucose control, albumin and white cell count were found to be statistically significant factors for the development of diarrhoea. ---------- Conclusion: Diarrhoea in ETF critically ill patients is multi-factorial. The early identification of diarrhoea risk factors and the development of a diarrhoea risk management algorithm is recommended.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims To assess self-reported lifetime prevalence of cardiovascular disease (CVD) among colorectal cancer survivors, and examine the cross-sectional and prospective associations of lifestyle factors with co-morbid CVD. Methods Colorectal cancer survivors were recruited (n = 1966). Data were collected at approximately 5, 12, 24 and 36 months post-diagnosis. Cross-sectional findings included six CVD categories (hypercholesterolaemia, hypertension, diabetes, heart failure, kidney disease and ischaemic heart disease (IHD)) at 5 months post-diagnosis. Longitudinal outcomes included the probability of developing (de novo) co-morbid CVD by 36 months post-diagnosis. Lifestyle factors included body mass index, physical activity, television (TV) viewing, alcohol consumption and smoking. Results Co-morbid CVD prevalence at 5 months post-diagnosis was 59%, and 16% of participants with no known CVD at the baseline reported de novo CVD by 36 months. Obesity at the baseline predicted de novo hypertension (odds ratio [OR] = 2.20, 95% confidence intervals [CI] = 1.09, 4.45) and de novo diabetes (OR = 6.55, 95% CI = 2.19, 19.53). Participants watching >4 h of TV/d at the baseline (compared with <2 h/d) were more likely to develop ischaemic heart disease by 36 months (OR = 5.51, 95% CI = 1.86, 16.34). Conclusion Overweight colorectal cancer survivors were more likely to suffer from co-morbid CVD. Interventions focusing on weight management and other modifiable lifestyle factors may reduce functional decline and improve survival.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Driver distraction is a research area that continues to receive considerable research interest but the drivers’ perspective is less well documented. The current research focuses on how drivers perceive the risks associated with a range of driver distractions with the aim of identifying features that contribute to their risk perception judgements. Multidimensional scaling analysis was employed to better understand drivers’ risk perceptions for 15 in-vehicle and external distractions. Results identify both salient qualitative characteristics that underpin drivers’ risk perceptions, such as the probability of a crash, as well as identify other features inherent in the distractions that may also contribute to risk perceptions. The implications of the results are discussed for better understanding drivers’ perceptions of distractions and the potential for improving road safety messages related to distracted driving.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AC motors are largely used in a wide range of modern systems, from household appliances to automated industry applications such as: ventilations systems, fans, pumps, conveyors and machine tool drives. Inverters are widely used in industrial and commercial applications due to the growing need for speed control in ASD systems. Fast switching transients and the common mode voltage, in interaction with parasitic capacitive couplings, may cause many unwanted problems in the ASD applications. These include shaft voltage and leakage currents. One of the inherent characteristics of Pulse Width Modulation (PWM) techniques is the generation of the common mode voltage, which is defined as the voltage between the electrical neutral of the inverter output and the ground. Shaft voltage can cause bearing currents when it exceeds the amount of breakdown voltage level of the thin lubricant film between the inner and outer rings of the bearing. This phenomenon is the main reason for early bearing failures. A rapid development in power switches technology has lead to a drastic decrement of switching rise and fall times. Because there is considerable capacitance between the stator windings and the frame, there can be a significant capacitive current (ground current escaping to earth through stray capacitors inside a motor) if the common mode voltage has high frequency components. This current leads to noises and Electromagnetic Interferences (EMI) issues in motor drive systems. These problems have been dealt with using a variety of methods which have been reported in the literature. However, cost and maintenance issues have prevented these methods from being widely accepted. Extra cost or rating of the inverter switches is usually the price to pay for such approaches. Thus, the determination of cost-effective techniques for shaft and common mode voltage reduction in ASD systems, with the focus on the first step of the design process, is the targeted scope of this thesis. An introduction to this research – including a description of the research problem, the literature review and an account of the research progress linking the research papers – is presented in Chapter 1. Electrical power generation from renewable energy sources, such as wind energy systems, has become a crucial issue because of environmental problems and a predicted future shortage of traditional energy sources. Thus, Chapter 2 focuses on the shaft voltage analysis of stator-fed induction generators (IG) and Doubly Fed Induction Generators DFIGs in wind turbine applications. This shaft voltage analysis includes: topologies, high frequency modelling, calculation and mitigation techniques. A back-to-back AC-DC-AC converter is investigated in terms of shaft voltage generation in a DFIG. Different topologies of LC filter placement are analysed in an effort to eliminate the shaft voltage. Different capacitive couplings exist in the motor/generator structure and any change in design parameters affects the capacitive couplings. Thus, an appropriate design for AC motors should lead to the smallest possible shaft voltage. Calculation of the shaft voltage based on different capacitive couplings, and an investigation of the effects of different design parameters are discussed in Chapter 3. This is achieved through 2-D and 3-D finite element simulation and experimental analysis. End-winding parameters of the motor are also effective factors in the calculation of the shaft voltage and have not been taken into account in previous reported studies. Calculation of the end-winding capacitances is rather complex because of the diversity of end winding shapes and the complexity of their geometry. A comprehensive analysis of these capacitances has been carried out with 3-D finite element simulations and experimental studies to determine their effective design parameters. These are documented in Chapter 4. Results of this analysis show that, by choosing appropriate design parameters, it is possible to decrease the shaft voltage and resultant bearing current in the primary stage of generator/motor design without using any additional active and passive filter-based techniques. The common mode voltage is defined by a switching pattern and, by using the appropriate pattern; the common mode voltage level can be controlled. Therefore, any PWM pattern which eliminates or minimizes the common mode voltage will be an effective shaft voltage reduction technique. Thus, common mode voltage reduction of a three-phase AC motor supplied with a single-phase diode rectifier is the focus of Chapter 5. The proposed strategy is mainly based on proper utilization of the zero vectors. Multilevel inverters are also used in ASD systems which have more voltage levels and switching states, and can provide more possibilities to reduce common mode voltage. A description of common mode voltage of multilevel inverters is investigated in Chapter 6. Chapter 7 investigates the elimination techniques of the shaft voltage in a DFIG based on the methods presented in the literature by the use of simulation results. However, it could be shown that every solution to reduce the shaft voltage in DFIG systems has its own characteristics, and these have to be taken into account in determining the most effective strategy. Calculation of the capacitive coupling and electric fields between the outer and inner races and the balls at different motor speeds in symmetrical and asymmetrical shaft and balls positions is discussed in Chapter 8. The analysis is carried out using finite element simulations to determine the conditions which will increase the probability of high rates of bearing failure due to current discharges through the balls and races.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article introduces a “pseudo classical” notion of modelling non-separability. This form of non-separability can be viewed as lying between separability and quantum-like non-separability. Non-separability is formalized in terms of the non-factorizabilty of the underlying joint probability distribution. A decision criterium for determining the non-factorizability of the joint distribution is related to determining the rank of a matrix as well as another approach based on the chi-square-goodness-of-fit test. This pseudo-classical notion of non-separability is discussed in terms of quantum games and concept combinations in human cognition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In computational linguistics, information retrieval and applied cognition, words and concepts are often represented as vectors in high dimensional spaces computed from a corpus of text. These high dimensional spaces are often referred to as Semantic Spaces. We describe a novel and efficient approach to computing these semantic spaces via the use of complex valued vector representations. We report on the practical implementation of the proposed method and some associated experiments. We also briefly discuss how the proposed system relates to previous theoretical work in Information Retrieval and Quantum Mechanics and how the notions of probability, logic and geometry are integrated within a single Hilbert space representation. In this sense the proposed system has more general application and gives rise to a variety of opportunities for future research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a digital world, users’ Personally Identifiable Information (PII) is normally managed with a system called an Identity Management System (IMS). There are many types of IMSs. There are situations when two or more IMSs need to communicate with each other (such as when a service provider needs to obtain some identity information about a user from a trusted identity provider). There could be interoperability issues when communicating parties use different types of IMS. To facilitate interoperability between different IMSs, an Identity Meta System (IMetS) is normally used. An IMetS can, at least theoretically, join various types of IMSs to make them interoperable and give users the illusion that they are interacting with just one IMS. However, due to the complexity of an IMS, attempting to join various types of IMSs is a technically challenging task, let alone assessing how well an IMetS manages to integrate these IMSs. The first contribution of this thesis is the development of a generic IMS model called the Layered Identity Infrastructure Model (LIIM). Using this model, we develop a set of properties that an ideal IMetS should provide. This idealized form is then used as a benchmark to evaluate existing IMetSs. Different types of IMS provide varying levels of privacy protection support. Unfortunately, as observed by Jøsang et al (2007), there is insufficient privacy protection in many of the existing IMSs. In this thesis, we study and extend a type of privacy enhancing technology known as an Anonymous Credential System (ACS). In particular, we extend the ACS which is built on the cryptographic primitives proposed by Camenisch, Lysyanskaya, and Shoup. We call this system the Camenisch, Lysyanskaya, Shoup - Anonymous Credential System (CLS-ACS). The goal of CLS-ACS is to let users be as anonymous as possible. Unfortunately, CLS-ACS has problems, including (1) the concentration of power to a single entity - known as the Anonymity Revocation Manager (ARM) - who, if malicious, can trivially reveal a user’s PII (resulting in an illegal revocation of the user’s anonymity), and (2) poor performance due to the resource-intensive cryptographic operations required. The second and third contributions of this thesis are the proposal of two protocols that reduce the trust dependencies on the ARM during users’ anonymity revocation. Both protocols distribute trust from the ARM to a set of n referees (n > 1), resulting in a significant reduction of the probability of an anonymity revocation being performed illegally. The first protocol, called the User Centric Anonymity Revocation Protocol (UCARP), allows a user’s anonymity to be revoked in a user-centric manner (that is, the user is aware that his/her anonymity is about to be revoked). The second protocol, called the Anonymity Revocation Protocol with Re-encryption (ARPR), allows a user’s anonymity to be revoked by a service provider in an accountable manner (that is, there is a clear mechanism to determine which entity who can eventually learn - and possibly misuse - the identity of the user). The fourth contribution of this thesis is the proposal of a protocol called the Private Information Escrow bound to Multiple Conditions Protocol (PIEMCP). This protocol is designed to address the performance issue of CLS-ACS by applying the CLS-ACS in a federated single sign-on (FSSO) environment. Our analysis shows that PIEMCP can both reduce the amount of expensive modular exponentiation operations required and lower the risk of illegal revocation of users’ anonymity. Finally, the protocols proposed in this thesis are complex and need to be formally evaluated to ensure that their required security properties are satisfied. In this thesis, we use Coloured Petri nets (CPNs) and its corresponding state space analysis techniques. All of the protocols proposed in this thesis have been formally modeled and verified using these formal techniques. Therefore, the fifth contribution of this thesis is a demonstration of the applicability of CPN and its corresponding analysis techniques in modeling and verifying privacy enhancing protocols. To our knowledge, this is the first time that CPN has been comprehensively applied to model and verify privacy enhancing protocols. From our experience, we also propose several CPN modeling approaches, including complex cryptographic primitives (such as zero-knowledge proof protocol) modeling, attack parameterization, and others. The proposed approaches can be applied to other security protocols, not just privacy enhancing protocols.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this globalized environment, Taiwanese firms have been very successful in achieving growth via international market expansion. In particular, the Taiwanese electronics industry has shown a dynamism lacking in comparable industries around the world. However, in recent years there has been a move by many of the larger Taiwanese manufacturing firms to outsource their manufacturing to low-cost producers such as China in order to remain competitive. Conversely, most Taiwanese small- to medium-sized enterprises (SMEs) have retained their production facilities in Taiwan. These SMEs seek to expand their sales beyond the domestic market by employing an export strategy, making a significant socioeconomic contribution to the domestic and regional economies. This paper highlights the key dimensions such as enhancing factors (benefits/advantages), inhibiting factors (barriers/costs), and managerial factors (characteristics/commitment) that play an important role in the internationalization of SMEs located within the Taiwanese electronics industry. A logistic regression model is used to predict the probability of a firm being an exporter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the first time in human history, large volumes of spoken audio are being broadcast, made available on the internet, archived, and monitored for surveillance every day. New technologies are urgently required to unlock these vast and powerful stores of information. Spoken Term Detection (STD) systems provide access to speech collections by detecting individual occurrences of specified search terms. The aim of this work is to develop improved STD solutions based on phonetic indexing. In particular, this work aims to develop phonetic STD systems for applications that require open-vocabulary search, fast indexing and search speeds, and accurate term detection. Within this scope, novel contributions are made within two research themes, that is, accommodating phone recognition errors and, secondly, modelling uncertainty with probabilistic scores. A state-of-the-art Dynamic Match Lattice Spotting (DMLS) system is used to address the problem of accommodating phone recognition errors with approximate phone sequence matching. Extensive experimentation on the use of DMLS is carried out and a number of novel enhancements are developed that provide for faster indexing, faster search, and improved accuracy. Firstly, a novel comparison of methods for deriving a phone error cost model is presented to improve STD accuracy, resulting in up to a 33% improvement in the Figure of Merit. A method is also presented for drastically increasing the speed of DMLS search by at least an order of magnitude with no loss in search accuracy. An investigation is then presented of the effects of increasing indexing speed for DMLS, by using simpler modelling during phone decoding, with results highlighting the trade-off between indexing speed, search speed and search accuracy. The Figure of Merit is further improved by up to 25% using a novel proposal to utilise word-level language modelling during DMLS indexing. Analysis shows that this use of language modelling can, however, be unhelpful or even disadvantageous for terms with a very low language model probability. The DMLS approach to STD involves generating an index of phone sequences using phone recognition. An alternative approach to phonetic STD is also investigated that instead indexes probabilistic acoustic scores in the form of a posterior-feature matrix. A state-of-the-art system is described and its use for STD is explored through several experiments on spontaneous conversational telephone speech. A novel technique and framework is proposed for discriminatively training such a system to directly maximise the Figure of Merit. This results in a 13% improvement in the Figure of Merit on held-out data. The framework is also found to be particularly useful for index compression in conjunction with the proposed optimisation technique, providing for a substantial index compression factor in addition to an overall gain in the Figure of Merit. These contributions significantly advance the state-of-the-art in phonetic STD, by improving the utility of such systems in a wide range of applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim and objective: The primary aim was to examine the prevalence of poststroke depression in Chinese stroke survivors six months after discharge from a rehabilitation hospital. A second aim was to determine whether six-month poststroke depression was associated with psychological, social and physical outcomes and demographic variables.---------- Background: There has been increasing recognition of the influence of depression on poststroke recovery. While some previous studies report associations between depression and social, psychological, physical and clinical outcomes, few studies had sufficient sample sizes for regression analysis thereby limiting the clinical applicability of their findings. ---------- Design: A cross-sectional design was used.---------- Method: Data were collected from 124 male and 86 female stroke survivors (mean age 71Æ7, SD 10Æ2 years). The Geriatric Depression Scale was used to measure depression, the State Self-esteem Scale to measure state self-esteem, the London Handicap Scale to measure participation restriction, the Social Support Questionnaire to measure satisfaction with social support and the Modified Barthel Index to measure functional ability. Results. Forty-two survivors (20Æ5%) reported mild and 33 (16Æ1%) reported severe depression. The presence of depression was associated with low levels of state self-esteem, social support satisfaction and functional ability. Logistic regression analysis revealed that these variables were statistically significant in predicting the probability of having depression (p < 0Æ05). ---------- Conclusions: Analyses in the present study revealed distinct patterns of correlates of depression, and the results were in agreement with prior studies that depression has a consistent positive ssociation with physical disability, living arrangements and social support and no significant association with the different types of brain lesion. Relevance to clinical practice. There is a need, routinely, to assess stroke survivors for depression and, where necessary, to intervene with the aim of enhancing psychological and social well-being.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the problem of object tracking in a wireless multimedia sensor network (we mainly focus on the camera component in this work). The vast majority of current object tracking techniques, either centralised or distributed, assume unlimited energy, meaning these techniques don't translate well when applied within the constraints of low-power distributed systems. In this paper we develop and analyse a highly-scalable, distributed strategy to object tracking in wireless camera networks with limited resources. In the proposed system, cameras transmit descriptions of objects to a subset of neighbours, determined using a predictive forwarding strategy. The received descriptions are then matched at the next camera on the objects path using a probability maximisation process with locally generated descriptions. We show, via simulation, that our predictive forwarding and probabilistic matching strategy can significantly reduce the number of object-misses, ID-switches and ID-losses; it can also reduce the number of required transmissions over a simple broadcast scenario by up to 67%. We show that our system performs well under realistic assumptions about matching objects appearance using colour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prognostics and asset life prediction is one of research potentials in engineering asset health management. We previously developed the Explicit Hazard Model (EHM) to effectively and explicitly predict asset life using three types of information: population characteristics; condition indicators; and operating environment indicators. We have formerly studied the application of both the semi-parametric EHM and non-parametric EHM to the survival probability estimation in the reliability field. The survival time in these models is dependent not only upon the age of the asset monitored, but also upon the condition and operating environment information obtained. This paper is a further study of the semi-parametric and non-parametric EHMs to the hazard and residual life prediction of a set of resistance elements. The resistance elements were used as corrosion sensors for measuring the atmospheric corrosion rate in a laboratory experiment. In this paper, the estimated hazard of the resistance element using the semi-parametric EHM and the non-parametric EHM is compared to the traditional Weibull model and the Aalen Linear Regression Model (ALRM), respectively. Due to assuming a Weibull distribution in the baseline hazard of the semi-parametric EHM, the estimated hazard using this model is compared to the traditional Weibull model. The estimated hazard using the non-parametric EHM is compared to ALRM which is a well-known non-parametric covariate-based hazard model. At last, the predicted residual life of the resistance element using both EHMs is compared to the actual life data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a robust stochastic framework for the incorporation of visual observations into conventional estimation, data fusion, navigation and control algorithms. The representation combines Isomap, a non-linear dimensionality reduction algorithm, with expectation maximization, a statistical learning scheme. The joint probability distribution of this representation is computed offline based on existing training data. The training phase of the algorithm results in a nonlinear and non-Gaussian likelihood model of natural features conditioned on the underlying visual states. This generative model can be used online to instantiate likelihoods corresponding to observed visual features in real-time. The instantiated likelihoods are expressed as a Gaussian mixture model and are conveniently integrated within existing non-linear filtering algorithms. Example applications based on real visual data from heterogenous, unstructured environments demonstrate the versatility of the generative models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present the application of a non-linear dimensionality reduction technique for the learning and probabilistic classification of hyperspectral image. Hyperspectral image spectroscopy is an emerging technique for geological investigations from airborne or orbital sensors. It gives much greater information content per pixel on the image than a normal colour image. This should greatly help with the autonomous identification of natural and manmade objects in unfamiliar terrains for robotic vehicles. However, the large information content of such data makes interpretation of hyperspectral images time-consuming and userintensive. We propose the use of Isomap, a non-linear manifold learning technique combined with Expectation Maximisation in graphical probabilistic models for learning and classification. Isomap is used to find the underlying manifold of the training data. This low dimensional representation of the hyperspectral data facilitates the learning of a Gaussian Mixture Model representation, whose joint probability distributions can be calculated offline. The learnt model is then applied to the hyperspectral image at runtime and data classification can be performed.