522 resultados para thermoluminescence method
Resumo:
Thin solid films were extensively used in the making of solar cells, cutting tools, magnetic recording devices, etc. As a result, the accurate measurement of mechanical properties of the thin films, such as hardness and elastic modulus, was required. The thickness of thin films normally varies from tens of nanometers to several micrometers. It is thus challenging to measure their mechanical properties. In this study, a nanoscratch method was proposed for hardness measurement. A three-dimensional finite element method (3-D FEM) model was developed to validate the nanoscratch method and to understand the substrate effect during nanoscratch. Nanoindentation was also used for comparison. The nanoscratch method was demonstrated to be valuable for measuring hardness of thin solid films.
Resumo:
In this article, an enriched radial point interpolation method (e-RPIM) is developed for computational mechanics. The conventional radial basis function (RBF) interpolation is novelly augmented by the suitable basis functions to reflect the natural properties of deformation. The performance of the enriched meshless RBF shape functions is first investigated using the surface fitting. The surface fitting results have proven that, compared with the conventional RBF, the enriched RBF interpolation has a much better accuracy to fit a complex surface than the conventional RBF interpolation. It has proven that the enriched RBF shape function will not only possess all advantages of the conventional RBF interpolation, but also can accurately reflect the deformation properties of problems. The system of equations for two-dimensional solids is then derived based on the enriched RBF shape function and both of the meshless strong-form and weak-form. A numerical example of a bar is presented to study the effectiveness and efficiency of e-RPIM. As an important application, the newly developed e-RPIM, which is augmented by selected trigonometric basis functions, is applied to crack problems. It has been demonstrated that the present e-RPIM is very accurate and stable for fracture mechanics problems.
Resumo:
A new relationship type of social networks - online dating - are gaining popularity. With a large member base, users of a dating network are overloaded with choices about their ideal partners. Recommendation methods can be utilized to overcome this problem. However, traditional recommendation methods do not work effectively for online dating networks where the dataset is sparse and large, and a two-way matching is required. This paper applies social networking concepts to solve the problem of developing a recommendation method for online dating networks. We propose a method by using clustering, SimRank and adapted SimRank algorithms to recommend matching candidates. Empirical results show that the proposed method can achieve nearly double the performance of the traditional collaborative filtering and common neighbor methods of recommendation.
Resumo:
Recent surveys of information technology management professionals show that understanding business domains in terms of business productivity and cost reduction potential, knowledge of different vertical industry segments and their information requirements, understanding of business processes and client-facing skills are more critical for Information Systems personnel than ever before. In an attempt to restrucuture the information systems curriculum accordingly, our view it that information systems students need to develop an appreciation for organizational work systems in order to understand the operation and significance of information systems within such work systems.
Resumo:
For the analysis of material nonlinearity, an effective shear modulus approach based on the strain control method is proposed in this paper by using point collocation method. Hencky’s total deformation theory is used to evaluate the effective shear modulus, Young’s modulus and Poisson’s ratio, which are treated as spatial field variables. These effective properties are obtained by the strain controlled projection method in an iterative manner. To evaluate the second order derivatives of shape function at the field point, the radial basis function (RBF) in the local support domain is used. Several numerical examples are presented to demonstrate the efficiency and accuracy of the proposed method and comparisons have been made with analytical solutions and the finite element method (ABAQUS).
Resumo:
We present an iterative hierarchical algorithm for multi-view stereo. The algorithm attempts to utilise as much contextual information as is available to compute highly accurate and robust depth maps. There are three novel aspects to the approach: 1) firstly we incrementally improve the depth fidelity as the algorithm progresses through the image pyramid; 2) secondly we show how to incorporate visual hull information (when available) to constrain depth searches; and 3) we show how to simultaneously enforce the consistency of the depth-map by continual comparison with neighbouring depth-maps. We show that this approach produces highly accurate depth-maps and, since it is essentially a local method, is both extremely fast and simple to implement.
Resumo:
This paper presents a strategy for delayed research method selection in a qualitative interpretivist research. An exemplary case details how explorative interviews were designed and conducted in accordance with a paradigm prior to deciding whether to adopt grounded theory or phenomenology for data analysis. The focus here is to determine the most appropriate research strategy in this case the methodological framing to conduct research and represent findings, both of which are detailed. Research addressing current management issues requires both a flexible framework and the capability to consider the research problem from various angles, to derive tangible results for academia with immediate application to business demands. Researchers, and in particular novices, often struggle to decide on an appropriate research method suitable to address their research problem. This often applies to interpretative qualitative research where it is not always immediately clear which is the most appropriate method to use, as the research objectives shift and crystallize over time. This paper uses an exemplary case to reveal how the strategy for delayed research method selection contributes to deciding whether to adopt grounded theory or phenomenology in the initial phase of a PhD research project. In this case, semi-structured interviews were used for data generation framed in an interpretivist approach, situated in a business context. Research questions for this study were thoroughly defined and carefully framed in accordance with the research paradigm‟s principles, while at the same time ensuring that the requirements of both potential research methods were met. The grounded theory and phenomenology methods were compared and contrasted to determine their suitability and whether they meet the research objectives based on a pilot study. The strategy proposed in this paper is an alternative to the more „traditional‟ approach, which initially selects the methodological formulation, followed by data generation. In conclusion, the suggested strategy for delayed research method selection intends to help researchers identify and apply the most appropriate method to their research. This strategy is based on explorations of data generation and analysis in order to derive faithful results from the data generated.
Resumo:
The accuracy of marker placement on palpable surface anatomical landmarks is an important consideration in biomechanics. Although marker placement reliability has been studied in some depth, it remains unclear whether or not the markers are accurately positioned over the intended landmark in order to define the static position and orientation of the segment. A novel method using commonly available X-ray imaging was developed to identify the accuracy of markers placed on the shoe surface by palpating landmarks through the shoe. An anterior–posterior and lateral–medial X-ray was taken on 24 participants with a newly developed marker set applied to both the skin and shoe. The vector magnitude of both skin- and shoe-mounted markers from the anatomical landmark was calculated, as well as the mean marker offset between skin- and shoe-mounted markers. The accuracy of placing markers on the shoe relative to the skin-mounted markers, accounting for shoe thickness, was less than 5mm for all markers studied. Further, when using the developed guidelines provided in this study, the method was deemed reliable (Intra-rater ICCs¼0.50–0.92). In conclusion, the method proposed here can reliably assess marker placement accuracy on the shoe surface relative to chosen anatomical landmarks beneath the skin.
Resumo:
In recent years, the advent of new tools for musculoskeletal simulation has increased the potential for significantly improving the ergonomic design process and ergonomic assessment of design. In this paper we investigate the use of one such tool, ‘The AnyBody Modeling System’, applied to solve a one-parameter and yet, complex ergonomic design problem. The aim of this paper is to investigate the potential of computer-aided musculoskeletal modelling in the ergonomic design process, in the same way as CAE technology has been applied to engineering design.
Resumo:
When used as floor joists, the new mono-symmetric LiteSteel beam (LSB) sections require web openings to provide access for inspections and various services. The LSBs consist of two rectangular hollow flanges connected by a slender web, and are subjected to lateral distortional buckling effects in the intermediate span range. Their member capacity design formulae developed to date are based on their elastic lateral buckling moments, and only limited research has been undertaken to predict the elastic lateral buckling moments of LSBs with web openings. This paper addresses this research gap by reporting the development of web opening modelling techniques based on an equivalent reduced web thickness concept and a numerical method for predicting the elastic buckling moments of LSBs with circular web openings. The proposed numerical method was based on a formulation of the total potential energy of LSBs with circular web openings. The accuracy of the proposed method’s use with the aforementioned modelling techniques was verified through comparison of its results with those of finite strip and finite element analyses of various LSBs.
Resumo:
The LiteSteel Beam (LSB) is an innovative cold-formed steel hollow flange section. When used as floor joists, the LSB sections require holes in the web to provide access for various services. In this study a detailed investigation was undertaken into the elastic lateral distortional buckling behaviour of LSBs with circular web openings subjected to a uniform moment using finite element analysis. Validated ideal finite element models were used first to study the effect of web holes on their elastic lateral distortional buckling behaviour. An equivalent web thickness method was then proposed using four different equations for the elastic buckling analyses of LSBs with web holes. It was found that two of them could be successfully used with approximate numerical models based on solid web elements with an equivalent reduced thickness to predict the elastic lateral distortional buckling moments.
Resumo:
The paper introduces the underlying principles and the general features of a meta-method (MAP method) developed as part of and used in various research, education and professional development programmes at ESC Lille. This method aims at providing effective and efficient structure and process for acting and learning in various complex, uncertain and ambiguous managerial situations (projects, programmes, portfolios). The paper is developed around three main parts. First, I suggest revisiting the dominant vision of the project management knowledge field, based on the assumptions they are not addressing adequately current business and management contexts and situations, and that competencies in management of entrepreneurial activities are the sources of creation of value for organisations. Then, grounded on the former developments, I introduce the underlying concepts supporting MAP method seen as a ‘convention generator’ and how this meta method inextricably links learning and practice in addressing managerial situations. Finally, I briefly describe an example of application, illustrating with a case study how the method integrates Project Management Governance, and give few examples of use in Management Education and Professional Development.
Resumo:
The paper introduces the underlying principles and the general features of a meta-method (MAP method – Management & Analysis of Projects) developed as part of and used in various research, education and professional development programmes at ESC Lille. This method aims at providing effective and efficient structure and process for acting and learning in various complex, uncertain and ambiguous managerial situations (projects, programmes, portfolios). The paper is organized in three parts. In a first part, I propose to revisit the dominant vision of the project management knowledge field, based on the assumptions they are not addressing adequately current business and management contexts and situations, and that competencies in management of entrepreneurial activities are the sources of creation of value for organisations. Then, grounded on the new suggested perspective, the second part presents the underlying concepts supporting MAP method seen as a ‘convention generator' and how this meta-method inextricably links learning and practice in addressing managerial situations. The third part describes example of application, illustrating with a brief case study how the method integrates Project Management Governance, and gives few examples of use in Management Education and Professional Development.