580 resultados para software failure prediction
Resumo:
Statistical modeling of traffic crashes has been of interest to researchers for decades. Over the most recent decade many crash models have accounted for extra-variation in crash counts—variation over and above that accounted for by the Poisson density. The extra-variation – or dispersion – is theorized to capture unaccounted for variation in crashes across sites. The majority of studies have assumed fixed dispersion parameters in over-dispersed crash models—tantamount to assuming that unaccounted for variation is proportional to the expected crash count. Miaou and Lord [Miaou, S.P., Lord, D., 2003. Modeling traffic crash-flow relationships for intersections: dispersion parameter, functional form, and Bayes versus empirical Bayes methods. Transport. Res. Rec. 1840, 31–40] challenged the fixed dispersion parameter assumption, and examined various dispersion parameter relationships when modeling urban signalized intersection accidents in Toronto. They suggested that further work is needed to determine the appropriateness of the findings for rural as well as other intersection types, to corroborate their findings, and to explore alternative dispersion functions. This study builds upon the work of Miaou and Lord, with exploration of additional dispersion functions, the use of an independent data set, and presents an opportunity to corroborate their findings. Data from Georgia are used in this study. A Bayesian modeling approach with non-informative priors is adopted, using sampling-based estimation via Markov Chain Monte Carlo (MCMC) and the Gibbs sampler. A total of eight model specifications were developed; four of them employed traffic flows as explanatory factors in mean structure while the remainder of them included geometric factors in addition to major and minor road traffic flows. The models were compared and contrasted using the significance of coefficients, standard deviance, chi-square goodness-of-fit, and deviance information criteria (DIC) statistics. The findings indicate that the modeling of the dispersion parameter, which essentially explains the extra-variance structure, depends greatly on how the mean structure is modeled. In the presence of a well-defined mean function, the extra-variance structure generally becomes insignificant, i.e. the variance structure is a simple function of the mean. It appears that extra-variation is a function of covariates when the mean structure (expected crash count) is poorly specified and suffers from omitted variables. In contrast, when sufficient explanatory variables are used to model the mean (expected crash count), extra-Poisson variation is not significantly related to these variables. If these results are generalizable, they suggest that model specification may be improved by testing extra-variation functions for significance. They also suggest that known influences of expected crash counts are likely to be different than factors that might help to explain unaccounted for variation in crashes across sites
Resumo:
Predicting safety on roadways is standard practice for road safety professionals and has a corresponding extensive literature. The majority of safety prediction models are estimated using roadway segment and intersection (microscale) data, while more recently efforts have been undertaken to predict safety at the planning level (macroscale). Safety prediction models typically include roadway, operations, and exposure variables—factors known to affect safety in fundamental ways. Environmental variables, in particular variables attempting to capture the effect of rain on road safety, are difficult to obtain and have rarely been considered. In the few cases weather variables have been included, historical averages rather than actual weather conditions during which crashes are observed have been used. Without the inclusion of weather related variables researchers have had difficulty explaining regional differences in the safety performance of various entities (e.g. intersections, road segments, highways, etc.) As part of the NCHRP 8-44 research effort, researchers developed PLANSAFE, or planning level safety prediction models. These models make use of socio-economic, demographic, and roadway variables for predicting planning level safety. Accounting for regional differences - similar to the experience for microscale safety models - has been problematic during the development of planning level safety prediction models. More specifically, without weather related variables there is an insufficient set of variables for explaining safety differences across regions and states. Furthermore, omitted variable bias resulting from excluding these important variables may adversely impact the coefficients of included variables, thus contributing to difficulty in model interpretation and accuracy. This paper summarizes the results of an effort to include weather related variables, particularly various measures of rainfall, into accident frequency prediction and the prediction of the frequency of fatal and/or injury degree of severity crash models. The purpose of the study was to determine whether these variables do in fact improve overall goodness of fit of the models, whether these variables may explain some or all of observed regional differences, and identifying the estimated effects of rainfall on safety. The models are based on Traffic Analysis Zone level datasets from Michigan, and Pima and Maricopa Counties in Arizona. Numerous rain-related variables were found to be statistically significant, selected rain related variables improved the overall goodness of fit, and inclusion of these variables reduced the portion of the model explained by the constant in the base models without weather variables. Rain tends to diminish safety, as expected, in fairly complex ways, depending on rain frequency and intensity.
Resumo:
Considerable past research has explored relationships between vehicle accidents and geometric design and operation of road sections, but relatively little research has examined factors that contribute to accidents at railway-highway crossings. Between 1998 and 2002 in Korea, about 95% of railway accidents occurred at highway-rail grade crossings, resulting in 402 accidents, of which about 20% resulted in fatalities. These statistics suggest that efforts to reduce crashes at these locations may significantly reduce crash costs. The objective of this paper is to examine factors associated with railroad crossing crashes. Various statistical models are used to examine the relationships between crossing accidents and features of crossings. The paper also compares accident models developed in the United States and the safety effects of crossing elements obtained using Korea data. Crashes were observed to increase with total traffic volume and average daily train volumes. The proximity of crossings to commercial areas and the distance of the train detector from crossings are associated with larger numbers of accidents, as is the time duration between the activation of warning signals and gates. The unique contributions of the paper are the application of the gamma probability model to deal with underdispersion and the insights obtained regarding railroad crossing related vehicle crashes. Considerable past research has explored relationships between vehicle accidents and geometric design and operation of road sections, but relatively little research has examined factors that contribute to accidents at railway-highway crossings. Between 1998 and 2002 in Korea, about 95% of railway accidents occurred at highway-rail grade crossings, resulting in 402 accidents, of which about 20% resulted in fatalities. These statistics suggest that efforts to reduce crashes at these locations may significantly reduce crash costs. The objective of this paper is to examine factors associated with railroad crossing crashes. Various statistical models are used to examine the relationships between crossing accidents and features of crossings. The paper also compares accident models developed in the United States and the safety effects of crossing elements obtained using Korea data. Crashes were observed to increase with total traffic volume and average daily train volumes. The proximity of crossings to commercial areas and the distance of the train detector from crossings are associated with larger numbers of accidents, as is the time duration between the activation of warning signals and gates. The unique contributions of the paper are the application of the gamma probability model to deal with underdispersion and the insights obtained regarding railroad crossing related vehicle crashes.
Resumo:
A study was done to develop macrolevel crash prediction models that can be used to understand and identify effective countermeasures for improving signalized highway intersections and multilane stop-controlled highway intersections in rural areas. Poisson and negative binomial regression models were fit to intersection crash data from Georgia, California, and Michigan. To assess the suitability of the models, several goodness-of-fit measures were computed. The statistical models were then used to shed light on the relationships between crash occurrence and traffic and geometric features of the rural signalized intersections. The results revealed that traffic flow variables significantly affected the overall safety performance of the intersections regardless of intersection type and that the geometric features of intersections varied across intersection type and also influenced crash type.
Resumo:
ASWEC is a joint conference of Engineers Australia and the Australian Computer Society reporting through the Engineers Australia/ACS Joint Board on Software Engineering.
Resumo:
Currently in Australia, there are no decision support tools for traffic and transport engineers to assess the crash risk potential of proposed road projects at design level. A selection of equivalent tools already exists for traffic performance assessment, e.g. aaSIDRA or VISSIM. The Urban Crash Risk Assessment Tool (UCRAT) was developed for VicRoads by ARRB Group to promote methodical identification of future crash risks arising from proposed road infrastructure, where safety cannot be evaluated based on past crash history. The tool will assist practitioners with key design decisions to arrive at the safest and the most cost -optimal design options. This paper details the development and application of UCRAT software. This professional tool may be used to calculate an expected mean number of casualty crashes for an intersection, a road link or defined road network consisting of a number of such elements. The mean number of crashes provides a measure of risk associated with the proposed functional design and allows evaluation of alternative options. The tool is based on historical data for existing road infrastructure in metropolitan Melbourne and takes into account the influence of key design features, traffic volumes, road function and the speed environment. Crash prediction modelling and risk assessment approaches were combined to develop its unique algorithms. The tool has application in such projects as road access proposals associated with land use developments, public transport integration projects and new road corridor upgrade proposals.
Resumo:
A number of instrumented laboratory-scale soil embankment slopes were subjected to artificial rainfall until they failed. The factor of safety of the slope based on real-time measurements of pore-water pressure (suction) and laboratory measured soil properties were calculated as the rainfall progressed. Based on the experiment measurements and slope stability analysis, it was observed that slope displacement measurements can be used to warn the slope failure more accurately. Further, moisture content/pore-water pressure measurements near the toe of the slope and the real-time factor of safety can also be used for prediction of rainfall-induced embankment failures with adequate accuracy.
Resumo:
Franchisor failure is one of the most problematic areas of the franchise relationship. It impacts negatively on landlords and other suppliers, but the contracting parties that are currently without legal rights to respond when a franchisor fails, and thus without consumer protection, are its franchisees. In this thesis I explore the current contractual, regulatory and commercial environment that franchisees inhabit, within the context of franchisor failure. I conclude that ex ante there are opportunities to level the playing field through consumer protection legislation. I also conclude that the task is not one solely for the consumer protection legislation; the problem should also be addressed ex post through the Corporations Act.
Resumo:
This paper presents a novel method for remaining useful life prediction using the Elliptical Basis Function (EBF) network and a Markov chain. The EBF structure is trained by a modified Expectation-Maximization (EM) algorithm in order to take into account the missing covariate set. No explicit extrapolation is needed for internal covariates while a Markov chain is constructed to represent the evolution of external covariates in the study. The estimated external and the unknown internal covariates constitute an incomplete covariate set which are then used and analyzed by the EBF network to provide survival information of the asset. It is shown in the case study that the method slightly underestimates the remaining useful life of an asset which is a desirable result for early maintenance decision and resource planning.
Resumo:
We argue that the sustained successful operation of an ES is determined by, and is dependent on, multiple organizational stakeholders. The single greatest organizational barrier to EIS success and achieving widespread organizational benefits can be attributed to the way in which different subcultures treat data critical to EIS operation. Building on Lee & Strong’s (2004) data roles we incorporate Schien’s (1996) cultural framework along with DeLone and McLean’s (2003) dimensions of IS success, unpacking the underlying drivers of behaviors as they relate to EIS data. Further, we explain the origins of data based conflict resulting in poor EIS data utilization.
Resumo:
A better understanding of the behaviour of prepared cane and bagasse during the crushing process is believed to be an essential prerequisite for further improvements to the crushing process. Improvements could be made, for example, in throughput, sugar extraction, and bagasse moisture. The ability to model the mechanical behaviour of bagasse as it is squeezed in a milling unit to extract juice would help identify how to improve the current process to reduce final bagasse moisture. However an adequate mechanical model for bagasse is currently not available. Previous investigations have proven with certainty that juice flow through bagasse obeys Darcy’s permeability law, that the grip of the rough surface of the grooves on the bagasse can be represented by the Mohr- Coulomb failure criterion for soils, and that the internal mechanical behaviour of the bagasse is critical state behaviour similar to that for sand and clay. Current Finite Element Models (FEM) available in commercial software have adequate permeability models. However, the same commercial software do not contain an adequate mechanical model for bagasse. Progress has been made in the last ten years towards implementing a mechanical model for bagasse in finite element software code. This paper builds on that progress and carries out a further step towards obtaining an adequate material model.
Resumo:
Objective--To determine whether heart failure with preserved systolic function (HFPSF) has different natural history from left ventricular systolic dysfunction (LVSD). Design and setting--A retrospective analysis of 10 years of data (for patients admitted between 1 July 1994 and 30 June 2004, and with a study census date of 30 June 2005) routinely collected as part of clinical practice in a large tertiary referral hospital.Main outcome measures-- Sociodemographic characteristics, diagnostic features, comorbid conditions, pharmacotherapies, readmission rates and survival.Results--Of the 2961 patients admitted with chronic heart failure, 753 had echocardiograms available for this analysis. Of these, 189 (25%) had normal left ventricular size and systolic function. In comparison to patients with LVSD, those with HFPSF were more often female (62.4% v 38.5%; P = 0.001), had less social support, and were more likely to live in nursing homes (17.9% v 7.6%; P < 0.001), and had a greater prevalence of renal impairment (86.7% v 6.2%; P = 0.004), anaemia (34.3% v 6.3%; P = 0.013) and atrial fibrillation (51.3% v 47.1%; P = 0.008), but significantly less ischaemic heart disease (53.4% v 81.2%; P = 0.001). Patients with HFPSF were less likely to be prescribed an angiotensin-converting enzyme inhibitor (61.9% v 72.5%; P = 0.008); carvedilol was used more frequently in LVSD (1.5% v 8.8%; P < 0.001). Readmission rates were higher in the HFPSF group (median, 2 v 1.5 admissions; P = 0.032), particularly for malignancy (4.2% v 1.8%; P < 0.001) and anaemia (3.9% v 2.3%; P < 0.001). Both groups had the same poor survival rate (P = 0.912). Conclusions--Patients with HFPSF were predominantly older women with less social support and higher readmission rates for associated comorbid illnesses. We therefore propose that reduced survival in HFPSF may relate more to comorbid conditions than suboptimal cardiac management.
Resumo:
Aims--Telemonitoring (TM) and structured telephone support (STS) have the potential to deliver specialised management to more patients with chronic heart failure (CHF), but their efficacy is still to be proven. Objectives To review randomised controlled trials (RCTs) of TM or STS on all- cause mortality and all-cause and CHF-related hospitalisations in patients with CHF, as a non-invasive remote model of specialised disease-management intervention.--Methods and Results--Data sources:We searched 15 electronic databases and hand-searched bibliographies of relevant studies, systematic reviews, and meeting abstracts. Two reviewers independently extracted all data. Study eligibility and participants: We included any randomised controlled trials (RCT) comparing TM or STS to usual care of patients with CHF. Studies that included intensified management with additional home or clinic visits were excluded. Synthesis: Primary outcomes (mortality and hospitalisations) were analysed; secondary outcomes (cost, length of stay, quality of life) were tabulated.--Results: Thirty RCTs of STS and TM were identified (25 peer-reviewed publications (n=8,323) and five abstracts (n=1,482)). Of the 25 peer-reviewed studies, 11 evaluated TM (2,710 participants), 16 evaluated STS (5,613 participants) and two tested both interventions. TM reduced all-cause mortality (risk ratio (RR 0•66 [95% CI 0•54-0•81], p<0•0001) and STS showed similar trends (RR 0•88 [95% CI 0•76-1•01], p=0•08). Both TM (RR 0•79 [95% CI 0•67-0•94], p=0•008) and STS (RR 0•77 [95% CI 0•68-0•87], p<0•0001) reduced CHF-related hospitalisations. Both interventions improved quality of life, reduced costs, and were acceptable to patients. Improvements in prescribing, patient-knowledge and self-care, and functional class were observed.--Conclusion: TM and STS both appear effective interventions to improve outcomes in patients with CHF.
Resumo:
Agile ridesharing aims to utilise the capability of social networks and mobile phones to facilitate people to share vehicles and travel in real time. However the application of social networking technologies in local communities to address issues of personal transport faces significant design challenges. In this paper we describe an iterative design-based approach to exploring this problem and discuss findings from the use of an early prototype. The findings focus upon interaction, privacy and profiling. Our early results suggest that explicitly entering information such as ride data and personal profile data into formal fields for explicit computation of matches, as is done in many systems, may not be the best strategy. It might be preferable to support informal communication and negotiation with text search techniques.