170 resultados para set based design
Resumo:
This paper analyses the performance of particular wave-energy converter that uses the gyroscopic effects of a large rotating fly-wheel in combination with a controlled power-take-off device. Controlled gyroscopic forces have been used successfully in the past to reduce the motion of marine structures. With appropriately designed power-take-off elements, gyroscopic forces can be controlled to optimise the extracted energy from the motion of marine structures.
Resumo:
During the past few decades, developing efficient methods to solve dynamic facility layout problems has been focused on significantly by practitioners and researchers. More specifically meta-heuristic algorithms, especially genetic algorithm, have been proven to be increasingly helpful to generate sub-optimal solutions for large-scale dynamic facility layout problems. Nevertheless, the uncertainty of the manufacturing factors in addition to the scale of the layout problem calls for a mixed genetic algorithm–robust approach that could provide a single unlimited layout design. The present research aims to devise a customized permutation-based robust genetic algorithm in dynamic manufacturing environments that is expected to be generating a unique robust layout for all the manufacturing periods. The numerical outcomes of the proposed robust genetic algorithm indicate significant cost improvements compared to the conventional genetic algorithm methods and a selective number of other heuristic and meta-heuristic techniques.
Resumo:
Background Project archives are becoming increasingly large and complex. On construction projects in particular, the increasing amount of information and the increasing complexity of its structure make searching and exploring information in the project archive challenging and time-consuming. Methods This research investigates a query-driven approach that represents new forms of contextual information to help users understand the set of documents resulting from queries of construction project archives. Specifically, this research extends query-driven interface research by representing three types of contextual information: (1) the temporal context is represented in the form of a timeline to show when each document was created; (2) the search-relevance context shows exactly which of the entered keywords matched each document; and (3) the usage context shows which project participants have accessed or modified a file. Results We implemented and tested these ideas within a prototype query-driven interface we call VisArchive. VisArchive employs a combination of multi-scale and multi-dimensional timelines, color-coded stacked bar charts, additional supporting visual cues and filters to support searching and exploring historical project archives. The timeline-based interface integrates three interactive timelines as focus + context visualizations. Conclusions The feasibility of using these visual design principles is tested in two types of project archives: searching construction project archives of an educational building project and tracking of software defects in the Mozilla Thunderbird project. These case studies demonstrate the applicability, usefulness and generality of the design principles implemented.
Resumo:
Design based research (DBR) is an appropriate method for small scale educational research projects involving collaboration between teachers, students and researchers. It is particularly useful in collaborative projects where an intervention is implemented and evaluated in a grounded context. The intervention can be technological, or a new program required by policy changes. It can be applied to educational contexts, such as when English teachers undertake higher degree research projects in their own or others’ sites; or for academics working collaboratively as researchers with teams of teachers. In the case described here the paper shows that DBR is designed to make a difference in the real world contexts in which occurs.
Resumo:
Dispersing a data object into a set of data shares is an elemental stage in distributed communication and storage systems. In comparison to data replication, data dispersal with redundancy saves space and bandwidth. Moreover, dispersing a data object to distinct communication links or storage sites limits adversarial access to whole data and tolerates loss of a part of data shares. Existing data dispersal schemes have been proposed mostly based on various mathematical transformations on the data which induce high computation overhead. This paper presents a novel data dispersal scheme where each part of a data object is replicated, without encoding, into a subset of data shares according to combinatorial design theory. Particularly, data parts are mapped to points and data shares are mapped to lines of a projective plane. Data parts are then distributed to data shares using the point and line incidence relations in the plane so that certain subsets of data shares collectively possess all data parts. The presented scheme incorporates combinatorial design theory with inseparability transformation to achieve secure data dispersal at reduced computation, communication and storage costs. Rigorous formal analysis and experimental study demonstrate significant cost-benefits of the presented scheme in comparison to existing methods.