250 resultados para secret shopping


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rakaposhi is a synchronous stream cipher, which uses three main components: a non-linear feedback shift register (NLFSR), a dynamic linear feedback shift register (DLFSR) and a non-linear filtering function (NLF). NLFSR consists of 128 bits and is initialised by the secret key K. DLFSR holds 192 bits and is initialised by an initial vector (IV). NLF takes 8-bit inputs and returns a single output bit. The work identifies weaknesses and properties of the cipher. The main observation is that the initialisation procedure has the so-called sliding property. The property can be used to launch distinguishing and key recovery attacks. The distinguisher needs four observations of the related (K,IV) pairs. The key recovery algorithm allows to discover the secret key K after observing 29 pairs of (K,IV). Based on the proposed related-key attack, the number of related (K,IV) pairs is 2(128 + 192)/4 pairs. Further the cipher is studied when the registers enter short cycles. When NLFSR is set to all ones, then the cipher degenerates to a linear feedback shift register with a non-linear filter. Consequently, the initial state (and Secret Key and IV) can be recovered with complexity 263.87. If DLFSR is set to all zeros, then NLF reduces to a low non-linearity filter function. As the result, the cipher is insecure allowing the adversary to distinguish it from a random cipher after 217 observations of keystream bits. There is also the key recovery algorithm that allows to find the secret key with complexity 2 54.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most previous work on unconditionally secure multiparty computation has focused on computing over a finite field (or ring). Multiparty computation over other algebraic structures has not received much attention, but is an interesting topic whose study may provide new and improved tools for certain applications. At CRYPTO 2007, Desmedt et al introduced a construction for a passive-secure multiparty multiplication protocol for black-box groups, reducing it to a certain graph coloring problem, leaving as an open problem to achieve security against active attacks. We present the first n-party protocol for unconditionally secure multiparty computation over a black-box group which is secure under an active attack model, tolerating any adversary structure Δ satisfying the Q 3 property (in which no union of three subsets from Δ covers the whole player set), which is known to be necessary for achieving security in the active setting. Our protocol uses Maurer’s Verifiable Secret Sharing (VSS) but preserves the essential simplicity of the graph-based approach of Desmedt et al, which avoids each shareholder having to rerun the full VSS protocol after each local computation. A corollary of our result is a new active-secure protocol for general multiparty computation of an arbitrary Boolean circuit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At Eurocrypt’04, Freedman, Nissim and Pinkas introduced a fuzzy private matching problem. The problem is defined as follows. Given two parties, each of them having a set of vectors where each vector has T integer components, the fuzzy private matching is to securely test if each vector of one set matches any vector of another set for at least t components where t < T. In the conclusion of their paper, they asked whether it was possible to design a fuzzy private matching protocol without incurring a communication complexity with the factor (T t ) . We answer their question in the affirmative by presenting a protocol based on homomorphic encryption, combined with the novel notion of a share-hiding error-correcting secret sharing scheme, which we show how to implement with efficient decoding using interleaved Reed-Solomon codes. This scheme may be of independent interest. Our protocol is provably secure against passive adversaries, and has better efficiency than previous protocols for certain parameter values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Espionage, surveillance and clandestine operations by secret agencies and governments were something of an East–West obsession in the second half of the twentieth century, a fact reflected in literature and film. In the twenty-first century, concerns of the Cold War and the threat of Communism have been rearticulated in the wake of 9/11. Under the rubric of ‘terror’ attacks, the discourses of security and surveillance are now framed within an increasingly global context. As this article illustrates, surveillance fiction written for young people engages with the cultural and political tropes that reflect a new social order that is different from the Cold War era, with its emphasis on spies, counter espionage, brainwashing and psychological warfare. While these tropes are still evident in much recent literature, advances in technology have transformed the means of tracking, profiling and accumulating data on individuals’ daily activities. Little Brother, The Hunger Games and Article 5 reflect the complex relationship between the real and the imaginary in the world of surveillance and, as this paper discusses, raise moral and ethical issues that are important questions for young people in our age of security.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this chapter we continue the exposition of crypto topics that was begun in the previous chapter. This chapter covers secret sharing, threshold cryptography, signature schemes, and finally quantum key distribution and quantum cryptography. As in the previous chapter, we have focused only on the essentials of each topic. We have selected in the bibliography a list of representative items, which can be consulted for further details. First we give a synopsis of the topics that are discussed in this chapter. Secret sharing is concerned with the problem of how to distribute a secret among a group of participating individuals, or entities, so that only predesignated collections of individuals are able to recreate the secret by collectively combining the parts of the secret that were allocated to them. There are numerous applications of secret-sharing schemes in practice. One example of secret sharing occurs in banking. For instance, the combination to a vault may be distributed in such a way that only specified collections of employees can open the vault by pooling their portions of the combination. In this way the authority to initiate an action, e.g., the opening of a bank vault, is divided for the purposes of providing security and for added functionality, such as auditing, if required. Threshold cryptography is a relatively recently studied area of cryptography. It deals with situations where the authority to initiate or perform cryptographic operations is distributed among a group of individuals. Many of the standard operations of single-user cryptography have counterparts in threshold cryptography. Signature schemes deal with the problem of generating and verifying electronic) signatures for documents.Asubclass of signature schemes is concerned with the shared-generation and the sharedverification of signatures, where a collaborating group of individuals are required to perform these actions. A new paradigm of security has recently been introduced into cryptography with the emergence of the ideas of quantum key distribution and quantum cryptography. While classical cryptography employs various mathematical techniques to restrict eavesdroppers from learning the contents of encrypted messages, in quantum cryptography the information is protected by the laws of physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, we study the security of the IDEA block cipher when it is used in various simple-length or double-length hashing modes. Even though this cipher is still considered as secure, we show that one should avoid its use as internal primitive for block cipher based hashing. In particular, we are able to generate instantaneously free-start collisions for most modes, and even semi-free-start collisions, pseudo-preimages or hash collisions in practical complexity. This work shows a practical example of the gap that exists between secret-key and known or chosen-key security for block ciphers. Moreover, we also settle the 20-year-old standing open question concerning the security of the Abreast-DM and Tandem-DM double-length compression functions, originally invented to be instantiated with IDEA. Our attacks have been verified experimentally and work even for strengthened versions of IDEA with any number of rounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing growth in the use of Hardware Security Modules (HSMs) towards identification and authentication of a security endpoint have raised numerous privacy and security concerns. HSMs have the ability to tie a system or an object, along with its users to the physical world. However, this enables tracking of the user and/or an object associated with the HSM. Current systems do not adequately address the privacy needs and as such are susceptible to various attacks. In this work, we analyse various security and privacy concerns that arise when deploying such hardware security modules and propose a system that allow users to create pseudonyms from a trusted master public-secret key pair. The proposed system is based on the intractability of factoring and finding square roots of a quadratic residue modulo a composite number, where the composite number is a product of two large primes. Along with the standard notion of protecting privacy of an user, the proposed system offers colligation between seemingly independent pseudonyms. This new property when combined with HSMs that store the master secret key is extremely beneficial to a user, as it offers a convenient way to generate a large number of pseudonyms using relatively small storage requirements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently a convex hull based human identification protocol was proposed by Sobrado and Birget, whose steps can be performed by humans without additional aid. The main part of the protocol involves the user mentally forming a convex hull of secret icons in a set of graphical icons and then clicking randomly within this convex hull. In this paper we show two efficient probabilistic attacks on this protocol which reveal the user’s secret after the observation of only a handful of authentication sessions. We show that while the first attack can be mitigated through appropriately chosen values of system parameters, the second attack succeeds with a non-negligible probability even with large system parameter values which cross the threshold of usability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we propose a steganalysis method that is able to identify the locations of stego bearing pixels in the binary image. In order to do that, our proposed method will calculate the residual between a given stego image and its estimated cover image. After that, we will compute the local entropy difference between these two versions of images as well. Finally, we will compute the mean of residual and mean of local entropy difference across multiple stego images. From these two means, the locations of stego bearing pixels can be identified. The presented empirical results demonstrate that our proposed method can identify the stego bearing locations of near perfect accuracy when sufficient stego images are supplied. Hence, our proposed method can be used to reveal which pixels in the binary image have been used to carry the secret message.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It’s no secret that the music festival scene in Australia has recently hit some troubled waters. Harvest festival has been cancelled this year, unpaid performers are still chasing the organisers of the failed Peats Ridge festival and Britpop superstars Blur recently pulled out of the Big Day Out, saying festival organisers “have let us down”. What factors are driving this upheaval, and why do some festivals survive where others fail?

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we propose a new blind steganalytic method to detect the presence of secret messages embedded in black and white images using the steganographic techniques. We start by extracting several sets of matrix, such as run length matrix, gap length matrix and pixel difference. We also apply characteristic function on these matrices to enhance their discriminative capabilities. Then we calculate the statistics which include mean, variance, kurtosis and skewness to form our feature sets. The presented empirical works demonstrate our proposed method can effectively detect three different types of steganography. This proves the universality of our proposed method as a blind steganalysis. In addition, the experimental results show our proposed method is capable of detecting small amount of the embedded message.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Secure multi-party computation (MPC) protocols enable a set of n mutually distrusting participants P 1, ..., P n , each with their own private input x i , to compute a function Y = F(x 1, ..., x n ), such that at the end of the protocol, all participants learn the correct value of Y, while secrecy of the private inputs is maintained. Classical results in the unconditionally secure MPC indicate that in the presence of an active adversary, every function can be computed if and only if the number of corrupted participants, t a , is smaller than n/3. Relaxing the requirement of perfect secrecy and utilizing broadcast channels, one can improve this bound to t a  < n/2. All existing MPC protocols assume that uncorrupted participants are truly honest, i.e., they are not even curious in learning other participant secret inputs. Based on this assumption, some MPC protocols are designed in such a way that after elimination of all misbehaving participants, the remaining ones learn all information in the system. This is not consistent with maintaining privacy of the participant inputs. Furthermore, an improvement of the classical results given by Fitzi, Hirt, and Maurer indicates that in addition to t a actively corrupted participants, the adversary may simultaneously corrupt some participants passively. This is in contrast to the assumption that participants who are not corrupted by an active adversary are truly honest. This paper examines the privacy of MPC protocols, and introduces the notion of an omnipresent adversary, which cannot be eliminated from the protocol. The omnipresent adversary can be either a passive, an active or a mixed one. We assume that up to a minority of participants who are not corrupted by an active adversary can be corrupted passively, with the restriction that at any time, the number of corrupted participants does not exceed a predetermined threshold. We will also show that the existence of a t-resilient protocol for a group of n participants, implies the existence of a t’-private protocol for a group of n′ participants. That is, the elimination of misbehaving participants from a t-resilient protocol leads to the decomposition of the protocol. Our adversary model stipulates that a MPC protocol never operates with a set of truly honest participants (which is a more realistic scenario). Therefore, privacy of all participants who properly follow the protocol will be maintained. We present a novel disqualification protocol to avoid a loss of privacy of participants who properly follow the protocol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been tremendous interest in watermarking multimedia content during the past two decades, mainly for proving ownership and detecting tamper. Digital fingerprinting, that deals with identifying malicious user(s), has also received significant attention. While extensive work has been carried out in watermarking of images, other multimedia objects still have enormous research potential. Watermarking database relations is one of the several areas which demand research focus owing to the commercial implications of database theft. Recently, there has been little progress in database watermarking, with most of the watermarking schemes modeled after the irreversible database watermarking scheme proposed by Agrawal and Kiernan. Reversibility is the ability to re-generate the original (unmarked) relation from the watermarked relation using a secret key. As explained in our paper, reversible watermarking schemes provide greater security against secondary watermarking attacks, where an attacker watermarks an already marked relation in an attempt to erase the original watermark. This paper proposes an improvement over the reversible and blind watermarking scheme presented in [5], identifying and eliminating a critical problem with the previous model. Experiments showing that the average watermark detection rate is around 91% even with attacker distorting half of the attributes. The current scheme provides security against secondary watermarking attacks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Database watermarking has received significant research attention in the current decade. Although, almost all watermarking models have been either irreversible (the original relation cannot be restored from the watermarked relation) and/or non-blind (requiring original relation to detect the watermark in watermarked relation). This model has several disadvantages over reversible and blind watermarking (requiring only watermarked relation and secret key from which the watermark is detected and original relation is restored) including inability to identify rightful owner in case of successful secondary watermarking, inability to revert the relation to original data set (required in high precision industries) and requirement to store unmarked relation at a secure secondary storage. To overcome these problems, we propose a watermarking scheme that is reversible as well as blind. We utilize difference expansion on integers to achieve reversibility. The major advantages provided by our scheme are reversibility to high quality original data set, rightful owner identification, resistance against secondary watermarking attacks, and no need to store original database at a secure secondary storage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motivated by the need of private set operations in a distributed environment, we extend the two-party private matching problem proposed by Freedman, Nissim and Pinkas (FNP) at Eurocrypt’04 to the distributed setting. By using a secret sharing scheme, we provide a distributed solution of the FNP private matching called the distributed private matching. In our distributed private matching scheme, we use a polynomial to represent one party’s dataset as in FNP and then distribute the polynomial to multiple servers. We extend our solution to the distributed set intersection and the cardinality of the intersection, and further we show how to apply the distributed private matching in order to compute distributed subset relation. Our work extends the primitives of private matching and set intersection by Freedman et al. Our distributed construction might be of great value when the dataset is outsourced and its privacy is the main concern. In such cases, our distributed solutions keep the utility of those set operations while the dataset privacy is not compromised. Comparing with previous works, we achieve a more efficient solution in terms of computation. All protocols constructed in this paper are provably secure against a semi-honest adversary under the Decisional Diffie-Hellman assumption.