210 resultados para nanotechnology
Resumo:
The subject of nanomaterials is very topical, with advances in knowledge made at a very rapid pace, making dissemination of this new knowledge a need of the hour. Although it is widely recognised that nanotechnology is playing a key role in many areas of societal endeavour, it is still unclear what risks certain nanomaterials may pose to humans and the environment. While nanotechnology has brought enormous benefits to humankind, its impact on human health and the environment is yet to be fully understood.
Resumo:
This Special Issue presents recent research advances in various aspects of advanced nanomaterials including synthesis, micro- and nanostructures, mechanical properties, modeling, and applications for material nanotechnology community. In particular, it aims to reflect recent advances in mechanical behaviors, for example, stiffness, strength, ductility, fatigue, and wear resistance, of various nanomaterials including nanocrystalline, inorganic, nonmetallic nanomaterials, composites with nanosized fillers, and biomaterials with nanosized structures. The role of this Special Issue is to bridge the gaps among fabrication techniques, experimental techniques, numerical modeling, and applications for some new nanomaterials and to investigate some key issues related to the mechanical properties of the nanomaterials. It brings together researchers working at the frontier of the mechanical behavior of nanomaterials...
Resumo:
This research has brought new scientific insight into the characteristics of airborne engineered nanoparticles, which is essential when considering their effects on human health. The key findings of the work were a harmonised and traceable protocol for the size characterisation of engineered nanoparticles, and quantification of their emissions and dynamics in workplaces. The novelty of this project is in coupling a comprehensive experimental measurement approach with innovative and effective data interpretation. Also, for the first time, the existence of a general trend in the emission of nanoparticles from a nanotechnology process was investigated.
Resumo:
Despite recent efforts to assess the release of nanoparticles to the workplace during different nanotechnology activities, the existence of a generalizable trend in the particle release has yet to be identified. This study aimed to characterize the release of synthetic clay nanoparticles from a laboratory-based jet milling process by quantifying the variations arising from primary particle size and surface treatment of the material used, as well as the feed rate of the machine. A broad range of materials were used in this study, and the emitted particles mass (PM2.5) and number concentrations (PNC) were measured at the release source. Analysis of variance, followed by linear mixed-effects modeling, was applied to quantify the variations in PM2.5 and PNC of the released particles caused by the abovementioned factors. The results confirmed that using materials of different primary size and surface treatment affects the release of the particles from the same process by causing statistically-significant variations in PM2.5 and PNC. The interaction of these two factors should also be taken into account as it resulted in variations in the measured particles release properties. Furthermore, the feed rate of the milling machine was confirmed to be another influencing parameter. Although this research does not identify a specific pattern in the release of synthetic clay nanoparticles from the jet milling process generalizable to other similar settings, it emphasizes that each tested case should be handled individually in terms of exposure considerations.
Resumo:
Advances in nanomaterials/nanostructures offer the possibility of fabricating multifunctional materials for use in engineering applications. Carbon nanotube (CNT)-based nanostructures are a representative building block for these multifunctional materials. Based on a series of in silico studies, we investigated the possibility of tuning the thermal conductivity of a three-dimensional CNT-based nanostructure: a single-walled CNT-based super-nanotube. The thermal conductivity of the super-nanotubes was shown to vary with different connecting carbon rings and super-nanotubes with longer constituent single-walled CNTs and larger diameters had a smaller thermal conductivity. The inverse of the thermal conductivity of the super-nanotubes showed a good linear relationship with the inverse of the length. The thermal conductivity was approximately proportional to the inverse of the temperature, but was insensitive to the axial strain as a result of the Poisson ratio. These results provide a fundamental understanding of the thermal conductivity of the super-nanotubes and will guide their future design/fabrication and engineering applications.
Resumo:
In 2009, the National Research Council of the National Academies released a report on A New Biology for the 21st Century. The council preferred the term ‘New Biology’ to capture the convergence and integration of the various disciplines of biology. The National Research Council stressed: ‘The essence of the New Biology, as defined by the committee, is integration—re-integration of the many sub-disciplines of biology, and the integration into biology of physicists, chemists, computer scientists, engineers, and mathematicians to create a research community with the capacity to tackle a broad range of scientific and societal problems.’ They define the ‘New Biology’ as ‘integrating life science research with physical science, engineering, computational science, and mathematics’. The National Research Council reflected: 'Biology is at a point of inflection. Years of research have generated detailed information about the components of the complex systems that characterize life––genes, cells, organisms, ecosystems––and this knowledge has begun to fuse into greater understanding of how all those components work together as systems. Powerful tools are allowing biologists to probe complex systems in ever greater detail, from molecular events in individual cells to global biogeochemical cycles. Integration within biology and increasingly fruitful collaboration with physical, earth, and computational scientists, mathematicians, and engineers are making it possible to predict and control the activities of biological systems in ever greater detail.' The National Research Council contended that the New Biology could address a number of pressing challenges. First, it stressed that the New Biology could ‘generate food plants to adapt and grow sustainably in changing environments’. Second, the New Biology could ‘understand and sustain ecosystem function and biodiversity in the face of rapid change’. Third, the New Biology could ‘expand sustainable alternatives to fossil fuels’. Moreover, it was hoped that the New Biology could lead to a better understanding of individual health: ‘The New Biology can accelerate fundamental understanding of the systems that underlie health and the development of the tools and technologies that will in turn lead to more efficient approaches to developing therapeutics and enabling individualized, predictive medicine.’ Biological research has certainly been changing direction in response to changing societal problems. Over the last decade, increasing awareness of the impacts of climate change and dwindling supplies of fossil fuels can be seen to have generated investment in fields such as biofuels, climate-ready crops and storage of agricultural genetic resources. In considering biotechnology’s role in the twenty-first century, biological future-predictor Carlson’s firm Biodesic states: ‘The problems the world faces today – ecosystem responses to global warming, geriatric care in the developed world or infectious diseases in the developing world, the efficient production of more goods using less energy and fewer raw materials – all depend on understanding and then applying biology as a technology.’ This collection considers the roles of intellectual property law in regulating emerging technologies in the biological sciences. Stephen Hilgartner comments that patent law plays a significant part in social negotiations about the shape of emerging technological systems or artefacts: 'Emerging technology – especially in such hotbeds of change as the life sciences, information technology, biomedicine, and nanotechnology – became a site of contention where competing groups pursued incompatible normative visions. Indeed, as people recognized that questions about the shape of technological systems were nothing less than questions about the future shape of societies, science and technology achieved central significance in contemporary democracies. In this context, states face ongoing difficulties trying to mediate these tensions and establish mechanisms for addressing problems of representation and participation in the sociopolitical process that shapes emerging technology.' The introduction to the collection will provide a thumbnail, comparative overview of recent developments in intellectual property and biotechnology – as a foundation to the collection. Section I of this introduction considers recent developments in United States patent law, policy and practice with respect to biotechnology – in particular, highlighting the Myriad Genetics dispute and the decision of the Supreme Court of the United States in Bilski v. Kappos. Section II considers the cross-currents in Canadian jurisprudence in intellectual property and biotechnology. Section III surveys developments in the European Union – and the interpretation of the European Biotechnology Directive. Section IV focuses upon Australia and New Zealand, and considers the policy responses to the controversy of Genetic Technologies Limited’s patents in respect of non-coding DNA and genomic mapping. Section V outlines the parts of the collection and the contents of the chapters.
Resumo:
The capabilities of the mechanical resonator-based nanosensors in detecting ultra-small mass or force shifts have driven a continuing exploration of the palette of nanomaterials for such application purposes. Based on large-scale molecular dynamics simulations, we have assessed the applicability of a new class of carbon nanomaterials for nanoresonator usage, i.e. the single-wall carbon nanotube (SWNT) network. It is found that SWNT networks inherit excellent mechanical properties from the constituent SWNTs, possessing a high natural frequency. However, although a high quality factor is suggested from the simulation results, it is hard to obtain an unambiguous Q-factor due to the existence of vibration modes in addition to the dominant mode. The nonlinearities resulting from these extra vibration modes are found to exist uniformly under various testing conditions including different initial actuations and temperatures. Further testing shows that these modes can be effectively suppressed through the introduction of axial strain, leading to an extremely high quality factor in the order of 109 estimated from the SWNT network with 2% tensile strain. Additional studies indicate that the carbon rings connecting the SWNTs can also be used to alter the vibrational properties of the resulting network. This study suggests that the SWNT network can be a good candidate for applications as nanoresonators.
Resumo:
The present work demonstrates a systematic approach for the synthesis of pure kesterite-phase Cu2ZnSnS4 (CZTS) nanocrystals with a uniform size distribution by a one-step, thioglycolic acid (TGA)-assisted hydrothermal route. The formation mechanism and the role of TGA in the formation of CZTS compound were thoroughly studied. It has been found that TGA interacted with Cu2+ to form Cu+ at the initial reaction stage and controlled the crystal-growth of CZTS nanocrystals during the hydrothermal reaction. The consequence of the reduction of Cu2+ to Cu+ led to the formation Cu2−xS nuclei, which acted as the crystal framework for the formation of CZTS compound. CZTS was formed by the diffusion of Zn2+ and Sn4+ cations to the lattice of Cu2−xS during the hydrothermal reaction. The as-synthesized CZTS nanocrystals exhibited strong light absorption over the range of wavelength beyond 1000 nm. The band gap of the material was determined to be 1.51 eV, which is optimal for application in photoelectric energy conversion device.
Resumo:
This book documents and evaluates the dramatic expansion of intellectual property law to accommodate various forms of biotechnology from micro-organisms, plants, and animals to human genes and stem cells. It makes a unique theoretical contribution to the controversial public debate over the commercialization of biological inventions. The author also considers the contradictions between the Supreme Court of Canada rulings in respect of the Harvard oncomouse, and genetically modified canola. He explores law, policy, and practice in both Australia and New Zealand in respect to gene patents and non-coding DNA. This study charts the rebellion against the European Union Biotechnology Directive – particularly in respect of Myriad Genetics’ BRCA1 and BRCA2 patents, and stem cell patent applications. The book also considers whether patent law will accommodate frontier technologies – such as bioinformatics, haplotype mapping, proteomics, pharmacogenomics, and nanotechnology. Intellectual Property and Biotechnology will be of prime interest to lawyers and patent attorneys, scientists and researchers, business managers and technology transfer specialists.
Resumo:
This unique and comprehensive collection investigates the challenges posed to intellectual property by recent paradigm shifts in biology. It explores the legal ramifications of emerging technologies, such as genomics, synthetic biology, stem cell research, nanotechnology, and biodiscovery. Extensive contributions examine recent controversial court decisions in patent law – such as Bilski v. Kappos, and the litigation over Myriad’s patents in respect of BRCA1 and BRCA2 – while other papers explore sui generis fields, such as access to genetic resources, plant breeders' rights, and traditional knowledge. The collection considers the potential and the risks of the new biology for global challenges – such as access to health-care, the protection of the environment and biodiversity, climate change, and food security. It also considers Big Science projects – such as biobanks, the 1000 Genomes Project, and the Doomsday Vault. The inter-disciplinary research brings together the work of scholars from Australia, Canada, Europe, the UK and the US and involves not only legal analysis of case law and policy developments, but also historical, comparative, sociological, and ethical methodologies. Intellectual Property and Emerging Technologies will appeal to policy-makers, legal practitioners, business managers, inventors, scientists and researchers.
Resumo:
In response to scientific breakthroughs in biotechnology, the development of new technologies, and the demands of a hungry capitalist marketplace, patent law has expanded to accommodate a range of biological inventions. There has been much academic and public debate as to whether gene patents have a positive impact upon research and development, health-care, and the protection of the environment. In a satire of prevailing patenting practices, the English poet and part-time casino waitress, Donna MacLean, sought a patent application - GB0000180.0 - in respect of herself. She explained that she had satisfied the usual patent criteria - in that she was novel, inventive, and useful: It has taken 30 years of hard labor for me to discover and invent myself, and now I wish to protect my invention from unauthorized exploitation, genetic or otherwise. I am new: I have led a private existence and I have not made the invention of myself public. I am not obvious (2000: 18). MacLean said she had many industrial applications. 'For example, my genes can be used in medical research to extremely profitable ends - I therefore wish to have sole control of my own genetic material' (2000: 18). She observed in an interview: 'There's a kind of unpleasant, grasping, greedy atmosphere at the moment around the mapping of the human genome ... I wanted to see if a human being could protect their own genes in law' (Meek, 2000). This special issue of Law in Context charts a new era in the long-standing debate over biological inventions. In the wake of the expansion of patentable subject matter, there has been great strain placed upon patent criteria - such as 'novelty', 'inventive step', and 'utility'. Furthermore, there has been a new focus upon legal doctrines which facilitate access to patented inventions - like the defence of experimental use, the 'Bolar' exception, patent pooling, and compulsory licensing. There has been a concerted effort to renew patent law with an infusion of ethical principles dealing with informed consent and benefit sharing. There has also been a backlash against the commercialisation of biological inventions, and a call by some activists for the abolition of patents on genetic inventions. This collection considers a wide range of biological inventions - ranging from micro-organisms, plants and flowers and transgenic animals to genes, express sequence tags, and research tools, as well as genetic diagnostic tests and pharmaceutical drugs. It is thus an important corrective to much policy work, which has been limited in its purview to merely gene patents and biomedical research. This collection compares and contrasts the various approaches of a number of jurisdictions to the legal problems in respect of biological inventions. In particular, it looks at the complexities of the 1998 European Union Directive on the Legal Protection of Biotechnological Inventions, as well as decisions of member states, such as the Netherlands, and peripheral states, like Iceland. The edition considers US jurisprudence on patent law and policy, as well as recent developments in Canada. It also focuses upon recent developments in Australia - especially in the wake of parallel policy inquiries into gene patents and access to genetic resources.