280 resultados para molecular docking


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have established and characterized a series of variant cell lines in which to identify the critical factors associated with E2-induced malignant progression, and the acquisition to tamoxifen resistance in human breast cancer. Sublines of the hormone-dependent MCF-7 cell line (MCF7/MIII and MCF7/LCC1) form stable, invasive, estrogen independent tumors in the mammary fat pads of ovariectomized athymic nude mice. These cells retain expression of both estrogen (ER) and progesterone receptors (PGR), but retain sensitivity to each of the major structural classes of antiestrogens. The tamoxifen-resistant MCF7/LCC2 cells retain sensitivity to the inhibitory effects of the steroidal antiestrogen ICI 182780. By comparing the parental hormone-dependent and variant hormone-independent cells, we have demonstrated an altered expression of some estrogen regulated genes (PGR, pS2, cathepsin D) in the hormone-independent variants. Other genes remain normally estrogen regulated (ER, laminin receptor, EGF-receptor). These data strongly implicate the altered regulation of a specific subset or network of estrogen regulated genes in the malignant progression of human breast cancer. Some of the primary response genes in this network may exhibit dose-response and induction kinetics similar to pS2, which is constitutively upregulated in the MCF7/MIII, MCF7/LCC1 and MCF7/LCC2 cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As microenvironmental factors such as three-dimensionality and cell–matrix interactions are increasingly being acknowledged by cancer biologists, more complex 3D in vitro models are being developed to study tumorigenesis and cancer progression. To better understand the pathophysiology of bone metastasis, we have established and validated a 3D indirect co-culture model to investigate the paracrine interactions between prostate cancer (PCa) cells and human osteoblasts. Co-culture of the human PCa, LNCaP cells embedded within polyethylene glycol hydrogels with human osteoblasts in the form of a tissue engineered bone construct (TEB), resulted in reduced proliferation of LNCaP cells. LNCaP cells in both monoculture and co-culture were responsive to the androgen analog, R1881, as indicated by an increase in the expression (mRNA and/or protein induction) of androgen-regulated genes including prostate specific antigen and fatty acid synthase. Microarray gene expression analysis further revealed an up-regulation of bone markers and other genes associated with skeletal and vasculature development and a significant activation of transforming growth factor β1 downstream genes in LNCaP cells after co-culture with TEB. LNCaP cells co-cultured with TEB also unexpectedly showed similar changes in classical androgen-responsive genes under androgen-deprived conditions not seen in LNCaP monocultures. The molecular changes of LNCaP cells after co-culturing with TEBs suggest that osteoblasts exert a paracrine effect that may promote osteomimicry and modulate the expression of androgen-responsive genes in LNCaP cells. Taken together, we have presented a novel 3D in vitro model that allows the study of cellular and molecular changes occurring in PCa cells and osteoblasts that are relevant to metastatic colonization of bone. This unique in vitro model could also facilitate cancer biologists to dissect specific biological hypotheses via extensive genomic or proteomic assessments to further our understanding of the PCa-bone crosstalk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is a modified version of a lecture which describes the synthesis, structure and reactivity of some neutral molecules of stellar significance. The neutrals are formed in the collision cell of a mass spectrometer following vertical Franck-Condon one electron oxidation of anions of known bond connectivity. Neutrals are characterised by conversion to positive ions and by extensive theoretical studies at the CCSD(T)/aug-cc-pVDZ//B3LYP/6-31G(d) level of theory. Four systems are considered in detail, viz (i) the formation of linear C-4 and its conversion to the rhombus C-4, (ii) linear C-5 and the atom scrambling of this system when energised, (iii) the stable cumulene oxide CCCCCO, and (iv) the elusive species O2C-CO. This paper is not intended to be a review of interstellar chemistry: examples are selected from our own work in this area. (C) 2002 Elsevier Science Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the synthesis, structure and properties of [2]rotaxanes prepared by the assembly of benzylic amide macrocycles around a series of amide and sulfide-/sulfoxide-/sulfone-containing threads. The efficacy of rotaxane formation is related to the hydrogen bond accepting properties of the various sulfur-containing functional groups in the thread, with the highest yields (up to 63% with a rigid vinyl spacer in the template site) obtained for sulfoxide rotaxanes. X-Ray crystallography of a sulfoxide rotaxane, 5, shows that the macrocycle adopts a highly symmetrical chair-like conformation in the solid state, with short hydrogen bonds between the macrocycle isophthalamide NH-protons and the amide carbonyl and sulfoxide S-O of the thread. In contrast, in the X-ray crystal structures of the analogous sulfide (4) and sulfone (6) rotaxanes the macrocycle adopts boat-like conformations with long intercomponent NH…O=SO and NH…S hydrogen bonds (in addition to several intercomponent amide-amide hydrogen bonds). Taking advantage of the different hydrogen bonding modes of the sulfur-based functional groups, a switchable molecular shuttle was prepared in which the oxidation level of sulfur determines the position of the macrocycle on the thread.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor cells in ascites are a major source of disease recurrence in ovarian cancer patients. In an attempt to identify and profile the population of ascites cells obtained from ovarian cancer patients, a novel method was developed to separate adherent (AD) and non-adherent (NAD) cells in culture. Twenty-five patients were recruited to this study; 11 chemonaive (CN) and 14 chemoresistant (CR). AD cells from both CN and CR patients exhibited mesenchymal morphology with an antigen profile of mesenchymal stem cells and fibroblasts. Conversely, NAD cells had an epithelial morphology with enhanced expression of cancer antigen 125 (CA125), epithelial cell adhesion molecule (EpCAM) and cytokeratin 7. NAD cells developed infiltrating tumors and ascites within 12-14 weeks after intraperitoneal (i.p.) injections into nude mice, whereas AD cells remained non-tumorigenic for up to 20 weeks. Subsequent comparison of selective epithelial, mesenchymal and cancer stem cell (CSC) markers between AD and NAD populations of CN and CR patients demonstrated an enhanced trend in mRNA expression of E-cadherin, EpCAM, STAT3 and Oct4 in the NAD population of CR patients. A similar trend of enhanced mRNA expression of CD44, MMP9 and Oct4 was observed in the AD population of CR patients. Hence, using a novel purification method we demonstrate for the first time a distinct separation of ascites cells into epithelial tumorigenic and mesenchymal non-tumorigenic populations. We also demonstrate that cells from the ascites of CR patients are predominantly epithelial and show a trend towards increased mRNA expression of genes associated with CSCs, compared to cells isolated from the ascites of CN patients. As the tumor cells in the ascites of ovarian cancer patients play a dominant role in disease recurrence, a thorough understanding of the biology of the ascites microenvironment from CR and CN patients is essential for effective therapeutic interventions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on its enticing properties, graphene has been envisioned with applications in the area of electronics, photonics, sensors, bioapplications and others. To facilitate various applications, doping has been frequently used to manipulate the properties of graphene. Despite a number of studies conducted on doped graphene regarding its electrical and chemical properties, the impact of doping on the mechanical properties of graphene has been rarely discussed. A systematic study of the vibrational properties of graphene doped with nitrogen and boron is performed by means of a molecular dynamics simulation. The influence from different density or species of dopants has been assessed. It is found that the impacts on the quality factor, Q, resulting from different densities of dopants vary greatly, while the influence on the resonance frequency is insignificant. The reduction of the resonance frequency caused by doping with boron only is larger than the reduction caused by doping with both boron and nitrogen. This study gives a fundamental understanding of the resonance of graphene with different dopants, which may benefit their application as resonators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug resistance continues to be a major barrier to the delivery of curative therapies in cancer. Historically, drug resistance has been associated with over-expression of drug transporters, changes in drug kinetics or amplification of drug targets. However, the emergence of resistance in patients treated with new-targeted therapies has provided new insight into the complexities underlying cancer drug resistance. Recent data now implicate intratumoural heterogeneity as a major driver of drug resistance. Single cell sequencing studies that identified multiple genetically distinct variants within human tumours clearly demonstrate the heterogeneous nature of human tumours. The major contributors to intratumoural heterogeneity are (i) genetic variation, (ii) stochastic processes, (iii) the microenvironment and (iv) cell and tissue plasticity. Each of these factors impacts on drug sensitivity. To deliver curative therapies to patients, modification of current therapeutic strategies to include methods that estimate intratumoural heterogeneity and plasticity will be essential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microenvironment plays a key role in the cellular differentiation of the two main cell lineages of the human breast, luminal epithelial, and myoepithelial. It is not clear, however, how the components of the microenvironment control the development of these cell lineages. To investigate how lineage development is regulated by 3-D culture and microenvironment components, we used the PMC42-LA human breast carcinoma cell line, which possesses stem cell characteristics. When cultured on a two-dimensional glass substrate, PMC42-LA cells formed a monolayer and expressed predominantly luminal epithelial markers, including cytokeratins 8, 18, and 19; E-cadherin; and sialomucin. The key myoepithelial-specific proteins α-smooth muscle actin and cytokeratin 14 were not expressed. When cultured within Engelbreth-Holm- Swarm sarcoma-derived basement membrane matrix (EHS matrix), PMC42-LA cells formed organoids in which the expression of luminal markers was reduced and the expression of other myoepithelial-specific markers (cytokeratin 17 and P-cadherin) was promoted. The presence of primary human mammary gland fibroblasts within the EHS matrix induced expression of the key myoepithelial-specific markers, α-smooth muscle actin and cytokeratin 14. Immortalized human skin fibroblasts were less effective in inducing expression of these key myoepithelial-specific markers. Confocal dual-labeling showed that individual cells expressed luminal or myoepithelial proteins, but not both. Conditioned medium from the mammary fibroblasts was equally effective in inducing myoepithelial marker expression. The results indicate that the myoepithelial lineage is promoted by the extracellular matrix, in conjunction with products secreted by breast-specific fibroblasts. Our results demonstrate a key role for the breast microenvironment in the regulation of breast lineage development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The invasion of human malignant melanoma cells into the extracellular matrix (ECM) involves the accumulation of proteases at sites of ECM degradation where activation of matrix metalloproteases (MMP) occurs. Here, we show that when membrane type 1 MMP (MT-MMP) was overexpressed in RPMI7951 human melanoma cells, the cells made contact with the ECM, activated soluble and ECM-bound MMP-2, and degraded and invaded the ECM. Further experiments demonstrated the importance of localization of the MT-MMP to invadopodia. Overexpression of MT-MMP without invadopodial localization caused activation of soluble MMP-2, but did not facilitate ECM degradation or cell invasiveness. Up-regulation of endogenous MT-MMP with concanavalin A caused activation of MMP-2. However, concanavalin A treatment prevented invadopodial localization of MT-MMP and ECM degradation. Neither a truncated MT-MMP mutant lacking transmembrane (TM) and cytoplasmic domains (ΔTM(MT-MMP)), nor a chimeric MT-MMP containing the interleukin 2 receptor α chain (IL-2R) TM and cytoplasmic domains (ΔTM(MT-MMP)/TM(IL-2R)) were localized to invadopodia or exhibited ECM degradation. Furthermore, a chimera of the TM/cytoplasmic domain of MT-MMP (TM(MT-MMP)) with tissue inhibitor of MMP 1 (TIMP-1/TM(MT- MMP)) directed the TIMP-1 molecule to invadopodia. Thus, the MT-MMP TM/cytoplasmic domain mediates the spatial organization of MT-MMP into invadopodia and subsequent degradation of the ECM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue engineering is a multidisciplinary field with the potential to replace tissues lost as a result of trauma, cancer surgery, or organ dysfunction. The successful production, integration, and maintenance of any tissue-engineered product are a result of numerous molecular interactions inside and outside the cell. We consider the essential elements for successful tissue engineering to be a matrix scaffold, space, cells, and vasculature, each of which has a significant and distinct molecular underpinning (Fig. 1). Our approach capitalizes on these elements. Originally developed in the rat, our chamber model (Fig. 2) involves the placement of an arteriovenous loop (the vascular supply) in a polycarbonate chamber (protected space) with the addition of cells and an extracellular matrix such as Matrigel or endogenous fibrin (34, 153, 246, 247). This model has also been extended to the rabbit and pig (J. Dolderer, M. Findlay, W. Morrison, manuscript in preparation), and has been modified for the mouse to grow adipose tissue and islet cells (33, 114, 122) (Fig. 3)...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dodecylamine was successfully intercalated into the layer space of kaolinite by utilizing the methanol treated kaolinite–dimethyl sulfoxide (DMSO) intercalation complex as an intermediate. The basal spacing of kaolinite, measured by X-ray diffraction (XRD), increased from 0.72 nm to 4.29 nm after the intercalation of dodecylamine. Also, the significant variation observed in the Fourier Transform Infrared Spectroscopy (FTIR) spectra of kaolinite when intercalated with dodecylamine verified the feasibility of intercalation of dodecylamine into kaolinite. Isothermal-isobaric (NPT) molecular dynamics simulation with the use of Dreiding force field was performed to probe into the layering behavior and structure of nanoconfined dodecylamine in the kaolinite gallery. The concentration profiles of the nitrogen atom, methyl group and methylene group of intercalated dodecylamine molecules in the direction perpendicular to the kaolinite basal surface indicated that the alkyl chains within the interlayer space of kaolinite exhibited an obvious layering structure. However, the unified bilayer, pseudo-trilayer, or paraffin-type arrangements of alkyl chains deduced based on their chain length combined with the measured basal spacing of organoclays were not found in this study. The alkyl chains aggregated to a mixture of ordered paraffin-type-like structure and disordered gauche conformation in the middle interlayer space of kaolinite, and some alkyl chains arranged in two bilayer structures, in which one was close to the silica tetrahedron surface, and the other was close to the alumina octahedron surface with their alkyl chains parallel to the kaolinite basal surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homologous recombination is needed for meiotic chromosome segregation, genome maintenance, and tumor suppression. RAD51AP1 (RAD51 associated protein 1) has been shown to interact with and enhance the recombinase activity of RAD51. Accordingly, genetic ablation of RAD51AP1 leads to enhanced sensitivity to and also chromosome aberrations upon DNA damage, demonstrating a role for RAD51AP1 in mitotic homologous recombination. Here we show physical association of RAD51AP1 with the meiosis-specific recombinase DMC1 and a stimulatory effect of RAD51AP1 on the DMC1-mediated D-loop reaction. Mechanistic studies have revealed that RAD51AP1 enhances the ability of the DMC1 presynaptic filament to capture the duplex-DNA partner and to assemble the synaptic complex, in which the recombining DNA strands are homologously aligned. We also provide evidence that functional cooperation is dependent on complex formation between DMC1 and RAD51AP1 and that distinct epitopes in RAD51AP1 mediate interactions with RAD51 and DMC1. Finally, we show that RAD51AP1 is expressed in mouse testes, and that RAD51AP1 foci colocalize with a subset of DMC1 foci in spermatocytes. These results suggest that RAD51AP1 also serves an important role in meiotic homologous recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular doping and detection are at the forefront of graphene research, a topic of great interest in physical and materials science. Molecules adsorb strongly on graphene, leading to a change in electrical conductivity at room temperature. However, a common impediment for practical applications reported by all studies to date is the excessively slow rate of desorption of important reactive gases such as ammonia and nitrogen dioxide. Annealing at high temperatures, or exposure to strong ultraviolet light under vacuum, is employed to facilitate desorption of these gases. In this article, the molecules adsorbed on graphene nanoflakes and on chemically derived graphene-nanomesh flakes are displaced rapidly at room temperature in air by the use of gaseous polar molecules such as water and ethanol. The mechanism for desorption is proposed to arise from the electrostatic forces exerted by the polar molecules, which decouples the overlap between substrate defect states, molecule states, and graphene states near the Fermi level. Using chemiresistors prepared from water-based dispersions of single-layer graphene on mesoporous alumina membranes, the study further shows that the edges of the graphene flakes (showing p-type responses to NO2 and NH3) and the edges of graphene nanomesh structures (showing n-type responses to NO2 and NH3) have enhanced sensitivity. The measured responses towards gases are comparable to or better than those which have been obtained using devices that are more sophisticated. The higher sensitivity and rapid regeneration of the sensor at room temperature provides a clear advancement towards practical molecule detection using graphene-based materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The practice of medicine has always aimed at individualized treatment of disease. The relationship between patient and physician has always been a personal one, and the physician's choice of treatment has been intended to be the best fit for the patient's needs. The necessary pooling/grouping of disease families and their assignment to a number of drugs or treatment methods has, consequently, led to an increase in the number of effective therapies. However, given the heterogeneity of most human diseases, and cancer specifically, it is currently impossible for the treating clinician to effectively predict a patient's response and outcome based on current technologies, much less the idiosyncratic resistances and adverse effects associated with the limited therapeutic options.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral kidwellite, a hydrated hydroxy phosphate of ferric iron and sodium of approximate formula NaFe93+(PO4)6(OH)11⋅3H2O, has been studied using a combination of electron microscopy with EDX and vibrational spectroscopic techniques. Raman spectroscopy identifies an intense band at 978 cm−1 and 1014 cm−1. These bands are attributed to the PO43− ν1 symmetric stretching mode. The ν3 antisymmetric stretching modes are observed by a large number of Raman bands. The series of Raman bands at 1034, 1050, 1063, 1082, 1129, 1144 and 1188 cm−1 are attributed to the ν3 antisymmetric stretching bands of the PO43− and HOPO32− units. The observation of these multiple Raman bands in the symmetric and antisymmetric stretching region gives credence to the concept that both phosphate and hydrogen phosphate units exist in the structure of kidwellite. The series of Raman bands at 557, 570, 588, 602, 631, 644 and 653 cm−1are assigned to the PO43− ν2 bending modes. The series of Raman bands at 405, 444, 453, 467, 490 and 500 cm−1 are attributed to the PO43− and HOPO32− ν4 bending modes. The spectrum is quite broad but Raman bands may be resolved at 3122, 3231, 3356, 3466 and 3580 cm−1. These bands are assigned to water stretching vibrational modes. The number and position of these bands suggests that water is in different molecular environments with differing hydrogen bond distances. Infrared bands at 3511 and 3359 cm−1 are ascribed to the OH stretching vibration of the OH units. Very broad bands at 3022 and 3299 cm−1 are attributed to the OH stretching vibrations of water. Vibrational spectroscopy offers insights into the molecular structure of the phosphate mineral kidwellite.