296 resultados para micro c T
Resumo:
INTRODUCTION There is evidence that the reduction of blood perfusion caused by closed soft tissue trauma (CSTT) delays the healing of the affected soft tissues and bone [1]. We hypothesise that the characterisation of vascular morphology changes (VMC) following injury allows us to determine the effect of the injury on tissue perfusion and thereby the severity of the injury. This research therefore aims to assess the VMC following CSTT in a rat model using contrast-enhanced micro-CT imaging. METHODOLOGY A reproducible CSTT was created on the left leg of anaesthetized rats (male, 12 weeks) with an impact device. After euthanizing the animals at 6 and 24 hours following trauma, the vasculature was perfused with a contrast agent (Microfil, Flowtech, USA). Both hind-limbs were dissected and imaged using micro-CT for qualitative comparison of the vascular morphology and quantification of the total vascular volume (VV). In addition, biopsy samples were taken from the CSTT region and scanned to compare morphological parameters of the vasculature between the injured and control limbs. RESULTS AND DISCUSSION While the visual observation of the hindlimb scans showed consistent perfusion of the microvasculature with microfil, enabling the identification of all major blood vessels, no clear differences in the vascular architecture were observed between injured and control limbs. However, overall VV within the region of interest (ROI)was measured to be higher for the injured limbs after 24h. Also, scans of biopsy samples demonstrated that vessel diameter and density were higher in the injured legs 24h after impact. CONCLUSION We believe these results will contribute to the development of objective diagnostic methods for CSTT based on changes to the microvascular morphology as well as aiding in the validation of future non-invasive clinical assessment modalities.
Resumo:
A nanostructured gold surface consisting of closely packed outwardly growing spikes is investigated for the electrochemical detection of dopamine and cytochrome c. A significant electrocatalytic effect for the electrooxidation of both dopamine and ascorbic acid at the nanostructured electrode was found due to the presence of surface active sites which allowed the detection of dopamine in the presence of excess ascorbic acid to be achieved by differential pulse voltammetry. By simple modification with a layer of Nafion, the enhanced electrocatalytic properties of the nanostructured surface was maintained while increasing the selectivity of dopamine detection in the presence of interfering species such as excess ascorbic and uric acids. Also, upon modification of the nanostructured surface with a monolayer of cysteine, the electrochemical response of immobilised cytochrome c in two distinct conformations was observed. This opens up the possibility of using such a nanostructured surface for the characterisation of other biomolecules and in bio-electroanalytical applications.
Resumo:
Purpose To determine the rate of recurrence and associated risk factors following the use of mitomycin C (MMC) and/or interferon alpha-2b (IFN) for management of non-invasive ocular surface squamous neoplasia (OSSN). Design Retrospective non-comparative interventional case series. Methods Clinical practice setting of 135 patients treated consecutively with topical MMC (0.4 mg/mL) and/or IFN (1 million units/mL) for OSSN observed for clinical recurrence. Results Clinical recurrences were diagnosed in 19 of 135 (14.1%) eyes following topical treatment. The mean time to recurrence was 17.2 months (range 4 - 61) with 14 (73.7%) recurring within a two year period. There was no greater risk of recurrence identified for variables including lesion size, lesion location, gender, age, treatment type or duration. Post-hoc log-Rank pairwise comparisons revealed that lesions initially treated using surgery alone had significantly reduced time to recurrence (21.1 ± 5.6 months) compared to previous topical treatment with MMC (with or without surgery) (29.6 ± 4.7 months) (p = 0.04) and primary OSSN (23.2 ± 1.8 months) (p = 0.09). Conclusions Topical MMC and IFN are an effective treatment modality for a wide range of non-invasive OSSN. Topical therapy avoids the morbidity of excisional surgery with equivalent or reduced recurrence rates and should be considered as primary therapy.
Hepatitis C, mental health and equity of access to antiviral therapy : a systematic narrative review
Resumo:
Introduction Access to hepatitis C (hereafter HCV) antiviral therapy has commonly excluded populations with mental health and substance use disorders because they were considered as having contraindications to treatment, particularly due to the neuropsychiatric effects of interferon that can occur in some patients. In this review we examined access to HCV interferon antiviral therapy by populations with mental health and substance use problems to identify the evidence and reasons for exclusion. Methods We searched the following major electronic databases for relevant articles: PsycINFO, Medline, CINAHL, Scopus, Google Scholar. The inclusion criteria comprised studies of adults aged 18 years and older, peer-reviewed articles, date range of (2002--2012) to include articles since the introduction of pegylated interferon with ribarvirin, and English language. The exclusion criteria included articles about HCV populations with medical co-morbidities, such as hepatitis B (hereafter HBV) and human immunodeficiency virus (hereafter HIV), because the clinical treatment, pathways and psychosocial morbidity differ from populations with only HCV. We identified 182 articles, and of these 13 met the eligibility criteria. Using an approach of systematic narrative review we identified major themes in the literature. Results Three main themes were identified including: (1) pre-treatment and preparation for antiviral therapy, (2) adherence and treatment completion, and (3) clinical outcomes. Each of these themes was critically discussed in terms of access by patients with mental health and substance use co-morbidities demonstrating that current research evidence clearly demonstrates that people with HCV, mental health and substance use co-morbidities have similar clinical outcomes to those without these co-morbidities. Conclusions While research evidence is largely supportive of increased access to interferon by people with HCV, mental health and substance use co-morbidities, there is substantial further work required to translate evidence into clinical practice. Further to this, we conclude that a reconsideration of the appropriateness of the tertiary health service model of care for interferon management is required and exploration of the potential for increased HCV care in primary health care settings.
Resumo:
Background: Phase III studies suggest that non-small-cell lung cancer (NSCLC) patients treated with cisplatin-docetaxel may have higher response rates and better survival compared with other platinum-based regimens. We report the final results of a randomised phase III study of docetaxel and carboplatin versus MIC or MVP in patients with advanced NSCLC. Patients and methods: Patients with biopsy proven stage III-IV NSCLC not suitable for curative surgery or radiotherapy were randomised to receive four cycles of either DCb (docetaxel 75 mg/m 2, carboplatin AUC 6), or MIC/MVP (mitomycin 6 mg/m 2, ifosfamide 3 g/m 2 and cisplatin 50 mg/m 2 or mitomycin 6 mg/ m 2, vinblastine 6 mg/m 2 and cisplatin 50 mg/m 2, respectively), 3 weekly. The primary end point was survival, secondary end points included response rates, toxicity and quality of life. Results: The median follow-up was 17.4 months. Overall response rate was 32% for both arms (partial response = 31%, complete response = 1%); 32% of MIC/MVP and 26% of DCb patients had stable disease. One-year survival was 39% and 35% for DCb and MIC/MVP, respectively. Two-year survival was 13% with both arms. Grade 3/4 neutropenia (74% versus 43%, P < 0.005), infection (18% versus 9%, P = 0.01) and mucositis (5% versus 1%, P = 0.02) were more common with DCb than MIC/MVP. The MIC/MVP arm had significant worsening in overall EORTC score and global health status whereas the DCb arm showed no significant change. Conclusions: The combination of DCb had similar efficacy to MIC/MVP but quality of life was better maintained. © 2006 European Society for Medical Oncology.
Resumo:
Background: Mitomycin C and etoposide have both demonstrated activity against gastric carcinoma. Etoposide is a topoisomerase II inhibitor with evidence for phase-specific and schedule-dependent activity. Patients and method. Twenty-eight consecutive patients with advanced upper gastrointestinal adenocarcinoma were treated with intravenous (i.v.) bolus mitomycin C 6 mg/m2 on day 1 every 21 days to a maximum of four courses. Oral etoposide capsules 50 mg b.i.d. (or 35 mg b.i.d. liquid) were administered days 1 to 10 extending to 14 days in subsequent courses if absolute neutrophil count >1.5 x 109/l on day 14 of first course, for up to six courses. Results: Twenty-six patients were assessed for response of whom 12 had measurable disease and 14 evaluable disease. Four patients had a documented response (one complete remission, three partial remissions) with an objective response rate of 15% (95% confidence interval (95% CI) 4%-35%). Eight patients had stable disease and 14 progressive disease. The median survival was six months. The schedule was well tolerated with no treatment-related deaths. Nine patients experienced leucopenia (seven grade II and two grade III). Nausea and vomiting (eight grade II, one grade III), fatigue (eight grade II, two grade III) and anaemia (seven grade II, two grade III) were the predominant toxicities. Conclusion: This out-patient schedule is well tolerated and shows modest activity in the treatment of advanced upper gastrointestinal adenocarcinoma. Further studies using protracted schedules of etoposide both orally and as infusional treatment should be developed.
Resumo:
Tumour angiogenesis has been recently recognised as one of the most important prognostic factors in lung cancer. Although a variety of angiogenic factors have been identified, the angiogenesis process remains poorly understood. Bcl-2, c-erbB-2 and p53 are well-known oncogenes involved in non- small-cell lung cancer pathogenesis. A direct correlation of thymidine phosphorylase (TP) and of vascular endothelial growth factor (VEGF) with intratumoural angiogenesis has been reported. In the present study we investigated the possible regulatory role if bcl-2, c-erB-2 proteins in angiogenesis and in VEGF and TP expression in non-small-cell lung cancer. Two hundred sixteen specimens from T1,2-NO, 1 staged patients treated with surgery alone were immunohistochemically examined. Bcl-2 and c-erbB-2 were significantly inversely related to each other (P = 0.04) and both were inversely associated with microvessel density (P < 0.02). High TP and VEGF reactivity was statistically related to loss of bcl-2 expression (P < 0.01). A significant co-expression of c-erbB-2 with TP was noted (P = 0.01). However, TP expression was related to high angiogenesis only in cases with absence of c-erB-2 expression (P < 0.0001). c-erbB-2 expression in poorly vascularised tumours was linked with poor outcome (P = 0.03). The present study provides strong evidence that the bcl-2 gene has a suppressive function over genes involved in both angiogenesis (VEGF and TP) and cell migration (c- erbB-2) in NSCLC. TP and c-erbB-2 proteins are significantly, and often simultaneously, expressed in bcl-2 negative cases. However, expression of the c-erbB-2 abolishes the TP-related angiogenic activity. Whether this is a result of a direct activity of the c-erbB-2 protein or a consequence of a c- erbB-2-related immune response remains to be further investigated.
Resumo:
Metastatic breast cancer (MBC) may present de novo but more commonly develops in women initially presenting with early breast cancer despite the widespread use of adjuvant hormonal and cytotoxic chemotherapy. MBC is incurable. Hormone sensitive MBC eventually becomes resistant to endocrine therapy in most women. Anthracyclines are the agents of choice in the treatment of endocrine resistant MBC. With the widespread use of anthracyclines in the adjuvant setting, taxanes have become the agents of choice for many patients. Recently capecitabine has become established as a standard of care for patients pretreated with anthracyclines and taxanes. However, a range of agents have activity as third line treatment. These include gemcitabine, vinorelbine and platinum analogues. The sequential use of non-cross resistant single agents rather than combination therapy is preferable in most women with MBC. Even though combination therapy can improve response rates and increase progression free interval, there is no robust evidence to indicate an advantage in terms of overall survival. Moreover, combination therapy is associated with a higher toxicity rate and poor quality of life. There is no role for dose-intense therapy, high dose therapy or maintenance chemotherapy outside the context of a clinical trial. The introduction of trastuzumab, monoclonal antibody targeting growth factor receptors, has improved the therapeutic options for women with tumours overexpressing HER2/neu. DNA micro-array profiles of tumours can potentially help to individualise therapy in future. Molecular targeted therapy has the potential to revolutionise the management of MBC.
Resumo:
In plants, silencing of mRNA can be transmitted from cell to cell and also over longer distances from roots to shoots. To investigate the long-distance mechanism, WT and mutant shoots were grafted onto roots silenced for an mRNA. We show that three genes involved in a chromatin silencing pathway, NRPD1a encoding RNA polymerase IVa, RNA-dependent RNA polymerase 2 (RDR2), and DICER-like 3 (DCL3), are required for reception of long-distance mRNA silencing in the shoot. A mutant representing a fourth gene in the pathway, argonaute4 (ago4), was also partially compromised in the reception of silencing. This pathway produces 24-nt siRNAs and resulted in decapped RNA, a known substrate for amplification of dsRNA by RDR6. Activation of silencing in grafted shoots depended on RDR6, but no 24-nt siRNAs were detected in mutant rdr6 shoots, indicating that RDR6 also plays a role in initial signal perception. After amplification of decapped transcripts, DCL4 and DCL2 act hierarchically as they do in antiviral resistance to produce 21- and 22-nt siRNAs, respectively, and these guide mRNA degradation. Several dcl genotypes were also tested for their capacity to transmit the mobile silencing signal from the rootstock. dcl1-8 and a dcl2 dcl3 dcl4 triple mutant are compromised in micro-RNA and siRNA biogenesis, respectively, but were unaffected in signal transmission. © 2007 by The National Academy of Sciences of the USA.
Resumo:
Drosophila possesses the core gene silencing machinery but, like all insects, lacks the canonical RNA-dependent RNA polymerases (RdRps) that in C. elegans either trigger or enhance two major small RNA-dependent gene silencing pathways. Introduction of two different nematode RdRps into Drosophila showed them to be functional, resulting in differing silencing activities. While RRF-1 enhanced transitive dsRNA-dependent silencing, EGO-1 triggered dsRNA-independent silencing, specifically of transgenes. The strain w; da-Gal4; UAST-ego-1, constitutively expressing ego-1, is capable of silencing transgene including dsRNA hairpin upon a single cross, which created a powerful tool for research in Drosophila. In C. elegans, EGO-1 is involved in transcriptional gene silencing (TGS) of chromosome regions that are unpaired during meiosis. There was no opportunity for meiotic interactions involving EGO-1 in Drosophila that would explain the observed transgene silencing. Transgene DNA is, however, unpaired during the pairing of chromosomes in embryonic mitosis that is an unusual characteristic of Diptera, suggesting that in Drosophila, EGO-1 triggers transcriptional silencing of unpaired DNA during embryonic mitosis. © 2012 Springer Basel.
Resumo:
Osteochondral grafts are common treatment options for joint focal defects due to their excellent functionality. However, the difficulty is matching the topography of host and graft(s) surfaces flush to one another. Incongruence could lead to disintegration particularly when the gap reaches subchondoral region. The aim of this study is therefore to investigate cell response to gap geometry when forming cartilage-cartilage bridge at the interface. The question is what would be the characteristics of such a gap if the cells could bridge across to fuse the edges? To answer this, osteochondral plugs devoid of host cells were prepared through enzymatic decellularization and artificial clefts of different sizes were created on the cartilage surface using laser ablation. High density pellets of heterologous chondrocytes were seeded on the defects and cultured with chondrogenic differentiation media for 35 days. The results showed that the behavior of chondrocytes was a function of gap topography. Depending on the distance of the edges two types of responses were generated. Resident cells surrounding distant edges demonstrated superficial attachment to one side whereas clefts of 150 to 250 µm width experienced cell migration and anchorage across the interface. The infiltration of chondrocytes into the gaps provided extra space for their proliferation and laying matrix; as the result faster filling of the initial void space was observed. On the other hand, distant and fit edges created an incomplete healing response due to the limited ability of differentiated chondrocytes to migrate and incorporate within the interface. It seems that the initial condition of the defects and the curvature profile of the adjacent edges were the prime determinants of the quality of repair; however, further studies to reveal the underlying mechanisms of cells adapting to and modifying the new environment would be of particular interest.
Resumo:
Flow induced shear stress plays an important role in regulating cell growth and distribution in scaffolds. This study sought to correlate wall shear stress and chondrocytes activity for engineering design of micro-porous osteochondral grafts based on the hypothesis that it is possible to capture and discriminate between the transmitted force and cell response at the inner irregularities. Unlike common tissue engineering therapies with perfusion bioreactors in which flow-mediated stress is the controlling parameter, this work assigned the associated stress as a function of porosity to influence in vitro proliferation of chondrocytes. D-optimality criterion was used to accommodate three pore characteristics for appraisal in a mixed level fractional design of experiment (DOE); namely, pore size (4 levels), distribution pattern (2 levels) and density (3 levels). Micro-porous scaffolds (n=12) were fabricated according to the DOE using rapid prototyping of an acrylic-based bio-photopolymer. Computational fluid dynamics (CFD) models were created correspondingly and used on an idealized boundary condition with a Newtonian fluid domain to simulate the dynamic microenvironment inside the pores. In vitro condition was reproduced for the 3D printed constructs seeded by high pellet densities of human chondrocytes and cultured for 72 hours. The results showed that cell proliferation was significantly different in the constructs (p<0.05). Inlet fluid velocity of 3×10-2mms-1 and average shear stress of 5.65×10-2 Pa corresponded with increased cell proliferation for scaffolds with smaller pores in hexagonal pattern and lower densities. Although the analytical solution of a Poiseuille flow inside the pores was found insufficient for the description of the flow profile probably due to the outside flow induced turbulence, it showed that the shear stress would increase with cell growth and decrease with pore size. This correlation demonstrated the basis for determining the relation between the induced stress and chondrocyte activity to optimize microfabrication of engineered cartilaginous constructs.
Resumo:
Articular cartilage is the load-bearing tissue that consists of proteoglycan macromolecules entrapped between collagen fibrils in a three-dimensional architecture. To date, the drudgery of searching for mathematical models to represent the biomechanics of such a system continues without providing a fitting description of its functional response to load at micro-scale level. We believe that the major complication arose when cartilage was first envisaged as a multiphasic model with distinguishable components and that quantifying those and searching for the laws that govern their interaction is inadequate. To the thesis of this paper, cartilage as a bulk is as much continuum as is the response of its components to the external stimuli. For this reason, we framed the fundamental question as to what would be the mechano-structural functionality of such a system in the total absence of one of its key constituents-proteoglycans. To answer this, hydrated normal and proteoglycan depleted samples were tested under confined compression while finite element models were reproduced, for the first time, based on the structural microarchitecture of the cross-sectional profile of the matrices. These micro-porous in silico models served as virtual transducers to produce an internal noninvasive probing mechanism beyond experimental capabilities to render the matrices micromechanics and several others properties like permeability, orientation etc. The results demonstrated that load transfer was closely related to the microarchitecture of the hyperelastic models that represent solid skeleton stress and fluid response based on the state of the collagen network with and without the swollen proteoglycans. In other words, the stress gradient during deformation was a function of the structural pattern of the network and acted in concert with the position-dependent compositional state of the matrix. This reveals that the interaction between indistinguishable components in real cartilage is superimposed by its microarchitectural state which directly influences macromechanical behavior.