461 resultados para energy-aware
Resumo:
Vehicular safety applications, such as cooperative collision warning systems, rely on beaconing to provide situational awareness that is needed to predict and therefore to avoid possible collisions. Beaconing is the continual exchange of vehicle motion-state information, such as position, speed, and heading, which enables each vehicle to track its neighboring vehicles in real time. This work presents a context-aware adaptive beaconing scheme that dynamically adapts the beaconing repetition rate based on an estimated channel load and the danger severity of the interactions among vehicles. The safety, efficiency, and scalability of the new scheme is evaluated by simulating vehicle collisions caused by inattentive drivers under various road traffic densities. Simulation results show that the new scheme is more efficient and scalable, and is able to improve safety better than the existing non-adaptive and adaptive rate schemes.
Resumo:
Improving energy efficiency has become increasingly important in data centers in recent years to reduce the rapidly growing tremendous amounts of electricity consumption. The power dissipation of the physical servers is the root cause of power usage of other systems, such as cooling systems. Many efforts have been made to make data centers more energy efficient. One of them is to minimize the total power consumption of these servers in a data center through virtual machine consolidation, which is implemented by virtual machine placement. The placement problem is often modeled as a bin packing problem. Due to the NP-hard nature of the problem, heuristic solutions such as First Fit and Best Fit algorithms have been often used and have generally good results. However, their performance leaves room for further improvement. In this paper we propose a Simulated Annealing based algorithm, which aims at further improvement from any feasible placement. This is the first published attempt of using SA to solve the VM placement problem to optimize the power consumption. Experimental results show that this SA algorithm can generate better results, saving up to 25 percentage more energy than First Fit Decreasing in an acceptable time frame.
Resumo:
Server consolidation using virtualization technology has become an important technology to improve the energy efficiency of data centers. Virtual machine placement is the key in the server consolidation. In the past few years, many approaches to the virtual machine placement have been proposed. However, existing virtual machine placement approaches to the virtual machine placement problem consider the energy consumption by physical machines in a data center only, but do not consider the energy consumption in communication network in the data center. However, the energy consumption in the communication network in a data center is not trivial, and therefore should be considered in the virtual machine placement in order to make the data center more energy-efficient. In this paper, we propose a genetic algorithm for a new virtual machine placement problem that considers the energy consumption in both the servers and the communication network in the data center. Experimental results show that the genetic algorithm performs well when tackling test problems of different kinds, and scales up well when the problem size increases.
Resumo:
Exploiting wind-energy is one possible way to extend flight duration for Unmanned Arial Vehicles. Wind-energy can also be used to minimise energy consumption for a planned path. In this paper, we consider uncertain time-varying wind fields and plan a path through them. A Gaussian distribution is used to determine uncertainty in the Time-varying wind fields. We use Markov Decision Process to plan a path based upon the uncertainty of Gaussian distribution. Simulation results that compare the direct line of flight between start and target point and our planned path for energy consumption and time of travel are presented. The result is a robust path using the most visited cell while sampling the Gaussian distribution of the wind field in each cell.
Resumo:
Australia is rich in renewable energy resources such as wind, solar and geothermal. Geographical diversity of these renewable resources combined with developing climate change policies poses a great challenge for the long term interconnection planning. Intermittency of wind and solar potentially driving the development of new transmission lines bring additional complexity to power system operations and planning. This paper provides an overview of generation and transmission planning studies in Australia to meet 20% renewable energy target by 2020. Appraisal of the effectiveness of dispersed energy storage, non schedulable peaking plants, wide area controls and demand management techniques to aid the penetration of renewables is presented in this paper
Resumo:
The available wind power is stochastic and requires appropriate tools in the OPF model for economic and reliable power system operation. This paper exhibit the OPF formulation with factors involved in the intermittency of wind power. Weibull distribution is adopted to find the stochastic wind speed and power distribution. The reserve requirement is evaluated based on the wind distribution and risk of under/over estimation of the wind power. In addition, the Wind Energy Conversion System (WECS) is represented by Doubly Fed Induction Generator (DFIG) based wind farms. The reactive power capability for DFIG based wind farm is also analyzed. The study is performed on IEEE-30 bus system with wind farm located at different buses and with different wind profiles. Also the reactive power capacity to be installed in the wind farm to maintain a satisfactory voltage profile under the various wind flow scenario is demonstrated.
Resumo:
Organisations are constantly seeking efficiency improvements for their business processes in terms of time and cost. Management accounting enables reporting of detailed cost of operations for decision making purpose, although significant effort is required to gather accurate operational data. Business process management is concerned with systematically documenting, managing, automating, and optimising processes. Process mining gives valuable insight into processes through analysis of events recorded by an IT system in the form of an event log with the focus on efficient utilisation of time and resources, although its primary focus is not on cost implications. In this paper, we propose a framework to support management accounting decisions on cost control by automatically incorporating cost data with historical data from event logs for monitoring, predicting and reporting process-related costs. We also illustrate how accurate, relevant and timely management accounting style cost reports can be produced on demand by extending open-source process mining framework ProM.
Resumo:
Cognitive radio is an emerging technology proposing the concept of dynamic spec- trum access as a solution to the looming problem of spectrum scarcity caused by the growth in wireless communication systems. Under the proposed concept, non- licensed, secondary users (SU) can access spectrum owned by licensed, primary users (PU) so long as interference to PU are kept minimal. Spectrum sensing is a crucial task in cognitive radio whereby the SU senses the spectrum to detect the presence or absence of any PU signal. Conventional spectrum sensing assumes the PU signal as ‘stationary’ and remains in the same activity state during the sensing cycle, while an emerging trend models PU as ‘non-stationary’ and undergoes state changes. Existing studies have focused on non-stationary PU during the transmission period, however very little research considered the impact on spectrum sensing when the PU is non-stationary during the sensing period. The concept of PU duty cycle is developed as a tool to analyse the performance of spectrum sensing detectors when detecting non-stationary PU signals. New detectors are also proposed to optimise detection with respect to duty cycle ex- hibited by the PU. This research consists of two major investigations. The first stage investigates the impact of duty cycle on the performance of existing detec- tors and the extent of the problem in existing studies. The second stage develops new detection models and frameworks to ensure the integrity of spectrum sensing when detecting non-stationary PU signals. The first investigation demonstrates that conventional signal model formulated for stationary PU does not accurately reflect the behaviour of a non-stationary PU. Therefore the performance calculated and assumed to be achievable by the conventional detector does not reflect actual performance achieved. Through analysing the statistical properties of duty cycle, performance degradation is proved to be a problem that cannot be easily neglected in existing sensing studies when PU is modelled as non-stationary. The second investigation presents detectors that are aware of the duty cycle ex- hibited by a non-stationary PU. A two stage detection model is proposed to improve the detection performance and robustness to changes in duty cycle. This detector is most suitable for applications that require long sensing periods. A second detector, the duty cycle based energy detector is formulated by integrat- ing the distribution of duty cycle into the test statistic of the energy detector and suitable for short sensing periods. The decision threshold is optimised with respect to the traffic model of the PU, hence the proposed detector can calculate average detection performance that reflect realistic results. A detection framework for the application of spectrum sensing optimisation is proposed to provide clear guidance on the constraints on sensing and detection model. Following this framework will ensure the signal model accurately reflects practical behaviour while the detection model implemented is also suitable for the desired detection assumption. Based on this framework, a spectrum sensing optimisation algorithm is further developed to maximise the sensing efficiency for non-stationary PU. New optimisation constraints are derived to account for any PU state changes within the sensing cycle while implementing the proposed duty cycle based detector.
Resumo:
This paper presents an analytical model to study the effect of stiffening ribs on vibration transmission between two rectangular plates coupled at right angle. Interesting wave attenuation patterns were observed by placing the stiffening rib either on the source or on the receiving plate. The result can be used to improve the understanding of vibration and for vibration control of more complex structures such as transformer tanks and machine covers.
Resumo:
The suitability of Role Based Access Control (RBAC) is being challenged in dynamic environments like healthcare. In an RBAC system, a user's legitimate access may be denied if their need has not been anticipated by the security administrator at the time of policy specification. Alternatively, even when the policy is correctly specified an authorised user may accidentally or intentionally misuse the granted permission. The heart of the challenge is the intrinsic unpredictability of users' operational needs as well as their incentives to misuse permissions. In this paper we propose a novel Budget-aware Role Based Access Control (B-RBAC) model that extends RBAC with the explicit notion of budget and cost, where users are assigned a limited budget through which they pay for the cost of permissions they need. We propose a model where the value of resources are explicitly defined and an RBAC policy is used as a reference point to discriminate the price of access permissions, as opposed to representing hard and fast rules for making access decisions. This approach has several desirable properties. It enables users to acquire unassigned permissions if they deem them necessary. However, users misuse capability is always bounded by their allocated budget and is further adjustable through the discrimination of permission prices. Finally, it provides a uniform mechanism for the detection and prevention of misuses.
Resumo:
The behaviour of single installations of solar energy systems is well understood; however, what happens at an aggregated location, such as a distribution substation, when output of groups of installations cumulate is not so well understood. This paper considers groups of installations attached to distributions substations on which the load is primarily commercial and industrial. Agent-based modelling has been used to model the physical electrical distribution system and the behaviour of equipment outputs towards the consumer end of the network. The paper reports the approach used to simulate both the electricity consumption of groups of consumers and the output of solar systems subject to weather variability with the inclusion of cloud data from the Bureau of Meteorology (BOM). The data sets currently used are for Townsville, North Queensland. The initial characteristics that indicate whether solar installations are cost effective from an electricity distribution perspective are discussed.
Resumo:
The smart phones we carry with us are becoming ubiquitous with everyday life and the sensing capabilities of these devices allow us to provide context-aware services. In this paper, we discuss the development of UniNav, a context-aware mobile application that delivers personalised campus maps for universities. The application utilises university students’ details to provide information and services that are relevant and important to them. It helps students to navigate within the campus and become familiar with their university environment quickly. A study was undertaken to evaluate the acceptability and usefulness of the campus map, as well as the impact on a users’ navigation efficiency by utilising the personal and environmental contexts. The result indicates the integration of personal and environmental contexts on digital maps can improve its usefulness and navigation efficiency.
Resumo:
Many of the more extreme bushfire prone landscapes in Australia are located in colder climate regions. For such sites, the National Construction Code regulates that houses satisfy both the Australian Standard for Bushfire (AS 3959:2009) and achieve a 6 Star energy rating. When combined these requirements present a considerable challenge to the construction of affordable housing - a problem which is often exacerbated by the complex topography of bushifre prone landscapes. Dr Weir presents a series of case studies from his architetcural practice which highlight the need for further design-led research into affordable housing - a ground up holistic approach to design which recolciles energy performance, human behaviourm, bushland conservation and bushfire safety.
Resumo:
We are aware of global concerns of sustainability and are encouraged on many fronts to modify our behaviour to save the planet but sometimes this understanding is more intellectual than motivated. An opportunity was identified within the university environment to activate a pilot study to investigate the level of voluntary student engagement in saving energy if a plant/digital interface were introduced. We postulate that people may be more inclined to participate in a "green" activity if they are more directly aware of the benefits. This project also seeks to discover if the introduction of nature (green plants) as the interface would encourage users to increase participation in socially responsive activities. Using plants as the interface offers an immediate sensory connection between the participants and the outcome of their chosen actions. This may generate a deeper awareness of the environment by enabling the participant to realise that their one small action in an ordinary day can contribute positively to larger global issues.