196 resultados para ancient DNA, Scythians, Palaeogenetic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Canonical single-stranded DNA-binding proteins (SSBs) from the oligosaccharide/oligonucleotide-binding (OB) domain family are present in all known organisms and are critical for DNA replication, recombination and repair. The SSB from the hyperthermophilic crenarchaeote Sulfolobus solfataricus (SsoSSB) has a ‘simple’ domain organization consisting of a single DNA-binding OB fold coupled to a flexible C-terminal tail, in contrast with other SSBs in this family that incorporate up to four OB domains. Despite the large differences in the domain organization within the SSB family, the structure of the OB domain is remarkably similar all cellular life forms. However, there are significant differences in the molecular mechanism of ssDNA binding. We have determined the structure of the SsoSSB OB domain bound to ssDNA by NMR spectroscopy. We reveal that ssDNA recognition is modulated by base-stacking of three key aromatic residues, in contrast with the OB domains of human RPA and the recently discovered human homologue of SsoSSB, hSSB1. We also demonstrate that SsoSSB binds ssDNA with a footprint of five bases and with a defined binding polarity. These data elucidate the structural basis of DNA binding and shed light on the molecular mechanism by which these ‘simple’ SSBs interact with ssDNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lung cancer is the leading cause of cancer-related mortality. According to WHO, 1.37 million deaths occur globally each year as a result of this disease. More than 70% of these cases are associated with prior tobacco consumption and/or cigarette smoking, suggesting a direct causal relationship. The development and progression of lung cancer and other malignancies involves the loss of genetic stability, resulting in acquisition of cumulative genetic changes; this affords the cell increased malignant potential. As such, an understanding of the mechanisms through which these events may occur will potentially allow for development of new anticancer therapies. This review will address the association between lung cancer and genetic instability, with a central focus on genetic mutations in the DNA damage repair pathways. In addition, we will discuss the potential clinical exploitation of these pathways, both in terms of biomarker staging, as well as through direct therapeutic targeting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both a systemic inflammatory response as well as DNA damage has been observed following exhaustive endurance exercise. Hypothetically, exercise-induced DNA damage might either be a consequence of inflammatory processes or causally involved in inflammation and immunological alterations after strenuous prolonged exercise (e.g. by inducing lymphocyte apoptosis and lymphocytopenia). Nevertheless, up to now only few studies have addressed this issue and there is hardly any evidence regarding a direct relationship between DNA or chromosomal damage and inflammatory responses in the context of exercise. The most conclusive picture that emerges from available data is that reactive oxygen and nitrogen species (RONS) appear to be the key effectors which link inflammation with DNA damage. Considering the time-courses of inflammatory and oxidative stress responses on the one hand and DNA effects on the other the lack of correlations between these responses might also be explained by too short observation periods. This review summarizes and discusses the recent findings on this topic. Furthermore, data from our own study are presented that aimed to verify potential associations between several endpoints of genome stability and inflammatory, immune-endocrine and muscle damage parameters in competitors of an Ironman triathlon until 19 days into recovery. The current results indicate that DNA effects in lymphocytes are not responsible for exercise-induced inflammatory responses. Furthermore, this investigation shows that inflammatory processes, vice versa, do not promote DNA damage, neither directly nor via an increased formation of RONS derived from inflammatory cells. Oxidative DNA damage might have been counteracted by training- and exercise-induced antioxidant responses. However, further studies are needed that combine advanced -omics based techniques (transcriptomics, proteomics) with state-of-the-art biochemical biomarkers to gain more insights into the underlying mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antioxidant requirements have neither been defined for endurance nor been defined for ultra-endurance athletes. To verify whether an acute bout of ultra-endurance exercise modifies the need for nutritive antioxidants, we aimed (1) to investigate the changes of endogenous and exogenous antioxidants in response to an Ironman triathlon; (2) to particularise the relevance of antioxidant responses to the indices of oxidatively damaged blood lipids, blood cell compounds and lymphocyte DNA and (3) to examine whether potential time-points of increased susceptibility to oxidative damage are associated with alterations in the antioxidant status. Blood that was collected from forty-two well-trained male athletes 2 d pre-race, immediately post-race, and 1, 5 and 19 d later was sampled. The key findings of the present study are as follows: (1) Immediately post-race, vitamin C, alpha-tocopherol, and levels of the Trolox equivalent antioxidant capacity, the ferric reducing ability of plasma and the oxygen radical absorbance capacity (ORAC) assays increased significantly. Exercise-induced changes in the plasma antioxidant capacity were associated with changes in uric acid, bilirubin and vitamin C. (2) Significant inverse correlations between ORAC levels and indices of oxidatively damaged DNA immediately and 1 d post-race suggest a protective role of the acute antioxidant responses in DNA stability. (3) Significant decreases in carotenoids and gamma-tocopherol 1 d post-race indicate that the antioxidant intake during the first 24 h of recovery following an acute ultra-endurance exercise requires specific attention. Furthermore, the present study illustrates the importance of a diversified and well-balanced diet to maintain a physiological antioxidant status in ultra-endurance athletes in reference to recommendations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is commonly accepted that regular moderate intensity physical activity reduces the risk of developing many diseases. Counter intuitively, however, evidence also exists for oxidative stress resulting from acute and strenuous exercise. Enhanced formation of reactive oxygen and nitrogen species may lead to oxidatively modified lipids, proteins and nucleic acids and possibly disease. Currently, only a few studies have investigated the influence of exercise on DNA stability and damage with conflicting results, small study groups and the use of different sample matrices or methods and result units. This is the first review to address the effect of exercise of various intensities and durations on DNA stability, focusing on human population studies. Furthermore, this article describes the principles and limitations of commonly used methods for the assessment of oxidatively modified DNA and DNA stability. This review is structured according to the type of exercise conducted (field or laboratory based) and the intensity performed (i.e. competitive ultra/endurance exercise or maximal tests until exhaustion). The findings presented here suggest that competitive ultra-endurance exercise (>4h) does not induce persistent DNA damage. However, when considering the effects of endurance exercise (<4h), no clear conclusions could be drawn. Laboratory studies have shown equivocal results (increased or no oxidative stress) after endurance or exhaustive exercise. To clarify which components of exercise participation (i.e. duration, intensity and training status of subjects) have an impact on DNA stability and damage, additional carefully designed studies combining the measurement of DNA damage, gene expression and DNA repair mechanisms before, during and after exercise of differing intensities and durations are required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During acute and strenuous exercise, the enhanced formation of reactive oxygen species can induce damage to lipids, proteins, and nucleic acids. The aim of this study was to investigate the effect of an Ironman triathlon (3.8 km swim, 180 km cycle, 42 km run), as a prototype of ultra-endurance exercise, on DNA stability. As biomarkers of genomic instability, the number of micronuclei, nucleoplasmic bridges, and nuclear buds were measured within the cytokinesis-block micronucleus cytome assay in once-divided peripheral lymphocytes of 20 male triathletes. Blood samples were taken 2 days before, within 20 min after the race, and 5 and 19 days post-race. Overall, the number of micronuclei decreased (P < 0.05) after the race, remained at a low level until 5 days post-race, and declined further to 19 days post-race (P < 0.01). The frequency of nucleoplasmic bridges and nuclear buds did not change immediately after the triathlon. The number of nucleoplasmic bridge declined from 2 days pre-race to 19 days post-exercise (P < 0.05). The frequency of nuclear buds increased after the triathlon, peaking 5 days post-race (P < 0.01) and decreased to basic levels 19 days after the race (P < 0.01). The results suggest that an Ironman triathlon does not cause long-lasting DNA damage in well-trained athletes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The major aims of this study were to investigate the effect of an Ironman triathlon on DNA migration in the single cell gel electrophoresis assay, apoptosis and necrosis in the cytokinesis-block micronucleus cytome assay with lymphocytes and on changes of total antioxidant capacity in plasma. Blood samples were taken 2 days (d) before, within 20 min, 1 d, 5 d and 19 d post-race. The level of strand breaks decreased (p<0.05) immediately after the race, then increased (p<0.01) 1 d post-race and declined (p<0.01) until 19 d post-race. Apoptotic and necrotic cells decreased (p<0.01) and the total antioxidant status increased (p<0.01) immediately after the race. The results indicate that ultra-endurance exercise does not cause prolonged DNA damage in well-trained male athletes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Also physical exercise in general is accepted to be protective, acute and strenuous exercise has been shown to induce oxidative stress. Enhanced formation of free radicals leads to oxidation of macromolecules and to DNA damage. On the other hand ultra-endurance events which require strenuous exercise are very popular and the number of participants is continuously increasing worldwide. Since only few data exists on Ironman triathletes, who are prototypes of ultra-endurance athletes, this study was aimed at assessing the risk of oxidative stress and DNA damage after finishing a triathlon and to predict a possible health risk. Blood samples of 42 male athletes were taken 2 days before, within 20 min after the race, 1, 5 and 19 days post-race. Oxidative stress marker increased only moderately after the race and returned to baseline after 5 days. Marker of DNA damage measured by the SCGE assay with and without restriction enzymes as well as by the sister chromatid exchange assay did either show no change or deceased within the first day after the race. Due to intake during the race and the release by the cells plasma concentrations of vitamin C and α-tocopherol increased after the event and returned to baseline 1 day after. This study indicates that despite a temporary increase in some oxidative stress markers, there is no persistent oxidative stress and no DNA damage in response to an Ironman triathlon in trained athletes, mainly due to an appropriate antioxidant intake and general protective alterations in the antioxidant defence system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regular moderate physical activity reduces the risk of several noncommunicable diseases. At the same time, evidence exists for oxidative stress resulting from acute and strenuous exercise by enhanced formation of reactive oxygen and nitrogen species, which may lead to oxidatively modified lipids, proteins, and possibly negative effects on DNA stability. The limited data on ultraendurance events such as an Ironman triathlon show no persistent DNA damage after the events. However, when considering the effects of endurance exercise comparable to a (half) marathon or a short triathlon distance, no clear conclusions could be drawn. In order to clarify which components of exercise participation, such as duration, intensity, frequency, or training status of the subjects, have an impact on DNA stability, more information is clearly needed that combines the measurement of DNA damage, gene expression, and DNA repair mechanisms before, during, and after exercise of differing intensities and durations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In his book, The Emperor of All Maladies, Siddhartha Mukherjee writes a history of cancer — "It is a chronicle of an ancient disease — once a clandestine, 'whispered-about' illness — that has metamorphosed into a lethal shape-shifting entity imbued with such penetrating metaphorical, medical, scientific, and political potency that cancer is often described as the defining plague of our generation." Increasingly, an important theme in the history of cancer is the role of law, particularly in the field of intellectual property law. It is striking that a number of contemporary policy debates over intellectual property and public health have concerned cancer research, diagnosis, and treatment. In the area of access to essential medicines, there has been much debate over Novartis’ patent application in respect of Glivec, a treatment for leukaemia. India’s Supreme Court held that the Swiss company’s patent application violated a safeguard provision in India’s patent law designed to stop evergreening. In the field of tobacco control, the Australian Government introduced plain packaging for tobacco products in order to address the health burdens associated with the tobacco epidemic. This regime was successfully defended in the High Court of Australia. In the area of intellectual property and biotechnology, there have been significant disputes over the Utah biotechnology company Myriad Genetics and its patents in respect of genetic testing for BRCA1 and BRCA2, which are related to breast cancer and ovarian cancer. The Federal Court of Australia handed down a decision on the validity of Myriad Genetics’ patent in respect of genetic testing for BRCA1 in February 2013. The Supreme Court of the United States heard a challenge to the validity of Myriad Genetics’ patents in this area in April 2013, and handed down a judgment in July 2013. Such disputes have involved tensions between intellectual property rights, and public health. This article focuses upon one of these important test cases involving intellectual property, public health, and cancer research. In June 2010, Cancer Voices Australia and Yvonne D’Arcy brought an action in the Federal Court of Australia against the validity of a BRCA1 patent — held by Myriad Genetics Inc, the Centre de Recherche du Chul, the Cancer Institute of Japan and Genetic Technologies Limited. Yvonne D’Arcy — a Brisbane woman who has had treatment for breast cancer — maintained: "I believe that what they are doing is morally and ethically corrupt and that big companies should not control any parts of the human body." She observed: "For my daughter, I've had her have [sic] mammograms, etc, because of me but I would still like her to be able to have the test to see if the mutation gene is in there from me." The applicants made the following arguments: "Genes and the information represented by human gene sequences are products of nature universally present in each individual, and the information content of a human gene sequence is fixed. Genetic variations or mutations are products of nature. The isolation of the BRCA1 gene mutation from the human body constitutes no more than a medical or scientific discovery of a naturally occurring phenomenon and does not give rise to a patentable invention." The applicants also argued that "the alleged invention is not a patentable invention in that, so far as claimed in claims 1–3, it is not a manner of manufacture within the meaning of s 6 of the Statute of Monopolies". The applicants suggested that "the alleged invention is a mere discovery". Moreover, the applicants contended that "the alleged invention of each of claims 1-3 is not a patentable invention because they are claims for biological processes for the generation of human beings". The applicants, though, later dropped the argument that the patent claims related to biological processes for the generation of human beings. In February 2013, Nicholas J of the Federal Court of Australia considered the case brought by Cancer Voices Australia and Yvonne D’Arcy against Myriad Genetics. The judge presented the issues in the case, as follows: "The issue that arises in this case is of considerable importance. It relates to the patentability of genes, or gene sequences, and the practice of 'gene patenting'. Briefly stated, the issue to be decided is whether under the Patents Act 1990 (Cth) a valid patent may be granted for a claim that covers naturally occurring nucleic acid — either deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) — that has been 'isolated'". In this context, the word "isolated" implies that naturally occurring nucleic acid found in the cells of the human body, whether it be DNA or RNA, has been removed from the cellular environment in which it naturally exists and separated from other cellular components also found there. The genes found in the human body are made of nucleic acid. The particular gene with which the patent in suit is concerned (BRCA1) is a human breast and ovarian cancer disposing gene. Various mutations that may be present in this gene have been linked to various forms of cancer including breast cancer and ovarian cancer.' The judge held in this particular case that Myriad Genetics’ patent claims were a "manner of manufacture" under s 6 of the Statute of Monopolies and s 18(1)(a) of the Patents Act 1990 (Cth). The matter is currently under appeal in the Full Court of the Federal Court of Australia. This article interprets the dispute over Myriad Genetics in light of the scholarly work of Nobel Laureate Professor Joseph Stiglitz on inequality. Such work has significant explanatory power in the context of intellectual property and biotechnology. First, Stiglitz has contended that "societal inequality was a result not just of the laws of economics, but also of how we shape the economy — through politics, including through almost every aspect of our legal system". Stiglitz is concerned that "our intellectual property regime … contributes needlessly to the gravest form of inequality." He maintains: "The right to life should not be contingent on the ability to pay." Second, Stiglitz worries that "some of the most iniquitous aspects of inequality creation within our economic system are a result of 'rent-seeking': profits, and inequality, generated by manipulating social or political conditions to get a larger share of the economic pie, rather than increasing the size of that pie". He observes that "the most iniquitous aspect of this wealth appropriation arises when the wealth that goes to the top comes at the expense of the bottom." Third, Stiglitz comments: "When the legal regime governing intellectual property rights is designed poorly, it facilitates rent-seeking" and "the result is that there is actually less innovation and more inequality." He is concerned that intellectual property regimes "create monopoly rents that impede access to health both create inequality and hamper growth more generally." Finally, Stiglitz has recommended: "Government-financed research, foundations, and the prize system … are alternatives, with major advantages, and without the inequality-increasing disadvantages of the current intellectual property rights system.’" This article provides a critical analysis of the Australian litigation and debate surrounding Myriad Genetics’ patents in respect of genetic testing for BRCA1. First, it considers the ruling of Nicholas J in the Federal Court of Australia that Myriad Genetics’ patent was a manner of manufacture as it related to an artificially created state of affairs, and not mere products of nature. Second, it examines the policy debate over gene patents in Australia, and its relevance to the litigation involving Myriad Genetics. Third, it examines comparative law, and contrasts the ruling by Nicholas J in the Federal Court of Australia with developments in the United States, Canada, and the European Union. Fourth, this piece considers the reaction to the decision of Nicholas at first instance in Australia. Fifth, the article assesses the prospects of an appeal to the Full Federal Court of Australia over the Myriad Genetics’ patents. Finally, this article observes that, whatever happens in respect of litigation against Myriad Genetics, there remains controversy over Genetic Technologies Limited. The Melbourne firm has been aggressively licensing and enforcing its related patents on non-coding DNA and genomic mapping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article considers the recent international controversy over the patents held by a Melbourne firm, Genetic Technologies Limited (GTG), in respect of non-coding DNA and genomic mapping. It explores the ramifications of the GTG dispute in terms of licensing, litigation, and policy reform, and—as a result of this dispute—the perceived conflict between law and science. GTG has embarked upon an ambitious licensing program with twenty seven commercial licensees and five research licensees. Most significantly, GTG has obtained an exclusive licence from Myriad Genetics to use and exploit its medical diagnostics in Australia, New Zealand, and the Asia-Pacific region. In the US, GTG brought a legal action for patent infringement against the Applera Corporation and its subsidiaries. In response, Applera counterclaimed that the patents of GTG were invalid because they failed to comply with the requirements of US patent law, such as novelty, inventive step, and written specifications. In New Zealand, the Auckland District Health Board brought legal action in the High Court, seeking a declaration that the patents of GTG were invalid, and that, in any case, the Board has not infringed them. The New Zealand Ministry of Health and the Ministry of Economic Development have reported to Cabinet on the issues relating to the patenting of genetic material. Similarly, the Australian Law Reform Commission (ALRC) has also engaged in an inquiry into gene patents and human health; and the Advisory Council on Intellectual Property (ACIP) has considered whether there should be a new defence in respect of experimental use and research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The native Asian oyster, Crassostrea ariakensis is one of the most common and important Crassostrea species that occur naturally along the coast of East Asia. Molecular species diagnosis is a prerequisite for population genetic analysis of wild oyster populations because oyster species cannot be discriminated reliably using external morphological characters alone due to character ambiguity. To date there have been few phylogeographic studies of natural edible oyster populations in East Asia, in particular this is true of the common species in Korea C. ariakensis. We therefore assessed the levels and patterns of molecular genetic variation in East Asian wild populations of C. ariakensis from Korea, Japan, and China using DNA sequence analysis of five concatenated mtDNA regions namely; 16S rRNA, cytochrome oxidase I, cytochrome oxidase II, cytochrome oxidase III, and cytochrome b. Two divergent C. ariakensis clades were identified between southern China and remaining sites from the northern region. In addition, hierarchical AMOVA and pairwise UST analyses showed that genetic diversity was discontinuous among wild populations of C. ariakensis in East Asia. Biogeographical and historical sea level changes are discussed as potential factors that may have influenced the genetic heterogeneity of wild C. ariakensis stocks across this region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reductions in DNA integrity, genome stability, and telomere length are strongly associated with the aging process, age-related diseases as well as the age-related loss of muscle mass. However, in people reaching an age far beyond their statistical life expectancy the prevalence of diseases, such as cancer, cardiovascular disease, diabetes or dementia, is much lower compared to “averagely” aged humans. These inverse observations in nonagenarians (90–99 years), centenarians (100–109 years) and super-centenarians (110 years and older) require a closer look into dynamics underlying DNA damage within the oldest old of our society. Available data indicate improved DNA repair and antioxidant defense mechanisms in “super old” humans, which are comparable with much younger cohorts. Partly as a result of these enhanced endogenous repair and protective mechanisms, the oldest old humans appear to cope better with risk factors for DNA damage over their lifetime compared to subjects whose lifespan coincides with the statistical life expectancy. This model is supported by study results demonstrating superior chromosomal stability, telomere dynamics and DNA integrity in “successful agers”. There is also compelling evidence suggesting that life-style related factors including regular physical activity, a well-balanced diet and minimized psycho-social stress can reduce DNA damage and improve chromosomal stability. The most conclusive picture that emerges from reviewing the literature is that reaching “super old” age appears to be primarily determined by hereditary/genetic factors, while a healthy lifestyle additionally contributes to achieving the individual maximum lifespan in humans. More research is required in this rapidly growing population of super old people. In particular, there is need for more comprehensive investigations including short- and long-term lifestyle interventions as well as investigations focusing on the mechanisms causing DNA damage, mutations, and telomere shortening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liposome-protamine-DNA nanoparticles (LPD) are safe, effective, and non-toxic adjuvants that induce Th1-like immune responses. We hypothesized that encapsulation of allergens into liposomes could be an appropriate option for immunotherapy. The present study evaluated the immunotherapeutic potential of a recombinant hybrid molecule (rHM) encapsulated in LPD nanoparticles in a murine model of Chenopodium album allergy. BALB/c mice were sensitized with the allergen in alum, and the immunotherapy procedure was performed by subcutaneous injections of LPD-rHM, rHM, or empty LPD at weekly intervals. Sensitized mice developed a Th2-biased immune response characterized by strong specific IgG1 and IgE production, IL-4, and the transcription factor GATA3 in spleen cell cultures. Treatment with the LPD-rHM resulted in a reduction in IgE and a marked increase in IgG2a. The LPD-rHM induced allergen-specific responses with relatively high interferon-gamma production, as well as expression of the transcription factor T-bet in stimulated splenocytes. In addition, lymphoproliferative responses were higher in the LPD-rHM-treated mice than in the other groups. Removal of the nanoparticles from the rHM resulted in a decrease in the allergen's immunogenicity. These results indicate that the rHM complexed with LPD nanoparticles has a marked suppressive effect on the allergic response and caused a shift toward a Th1 pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sheep (Ovis aries) is favored by many musculoskeletal tissue engineering groups as a large animal model because of its docile temperament and ease of husbandry. The size and weight of sheep are comparable to humans, which allows for the use of implants and fixation devices used in human clinical practice. The construction of a complimentary DNA (cDNA) library can capture the expression of genes in both a tissue- and time-specific manner. cDNA libraries have been a consistent source of gene discovery ever since the technology became commonplace more than three decades ago. Here, we describe the construction of a cDNA library using cells derived from sheep bones based on the pBluescript cDNA kit. Thirty clones were picked at random and sequenced. This led to the identification of a novel gene, C12orf29, which our initial experiments indicate is involved in skeletal biology. We also describe a polymerase chain reaction-based cDNA clone isolation method that allows the isolation of genes of interest from a cDNA library pool. The techniques outlined here can be applied in-house by smaller tissue engineering groups to generate tools for biomolecular research for large preclinical animal studies and highlights the power of standard cDNA library protocols to uncover novel genes.