216 resultados para Word Processing
Resumo:
Description of a patient's injuries is recorded in narrative text form by hospital emergency departments. For statistical reporting, this text data needs to be mapped to pre-defined codes. Existing research in this field uses the Naïve Bayes probabilistic method to build classifiers for mapping. In this paper, we focus on providing guidance on the selection of a classification method. We build a number of classifiers belonging to different classification families such as decision tree, probabilistic, neural networks, and instance-based, ensemble-based and kernel-based linear classifiers. An extensive pre-processing is carried out to ensure the quality of data and, in hence, the quality classification outcome. The records with a null entry in injury description are removed. The misspelling correction process is carried out by finding and replacing the misspelt word with a soundlike word. Meaningful phrases have been identified and kept, instead of removing the part of phrase as a stop word. The abbreviations appearing in many forms of entry are manually identified and only one form of abbreviations is used. Clustering is utilised to discriminate between non-frequent and frequent terms. This process reduced the number of text features dramatically from about 28,000 to 5000. The medical narrative text injury dataset, under consideration, is composed of many short documents. The data can be characterized as high-dimensional and sparse, i.e., few features are irrelevant but features are correlated with one another. Therefore, Matrix factorization techniques such as Singular Value Decomposition (SVD) and Non Negative Matrix Factorization (NNMF) have been used to map the processed feature space to a lower-dimensional feature space. Classifiers with these reduced feature space have been built. In experiments, a set of tests are conducted to reflect which classification method is best for the medical text classification. The Non Negative Matrix Factorization with Support Vector Machine method can achieve 93% precision which is higher than all the tested traditional classifiers. We also found that TF/IDF weighting which works well for long text classification is inferior to binary weighting in short document classification. Another finding is that the Top-n terms should be removed in consultation with medical experts, as it affects the classification performance.
Resumo:
Purpose: This study investigated the impact of simulated hyperopic anisometropia and sustained near work on performance of academic-related measures in children. Methods: Participants included 16 children (mean age: 11.1 ± 0.8 years) with minimal refractive error. Academic-related outcome measures included a reading test (Neale Analysis of Reading Ability), visual information processing tests (Coding and Symbol Search subtests from the Wechsler Intelligence Scale for Children) and a reading-related eye movement test (Developmental Eye Movement test). Performance was assessed with and without 0.75 D of imposed monocular hyperopic defocus (administered in a randomised order), before and after 20 minutes of sustained near work. Unilateral hyperopic defocus was systematically assigned to either the dominant or non-dominant sighting eye to evaluate the impact of ocular dominance on any performance decrements. Results: Simulated hyperopic anisometropia and sustained near work both independently reduced performance on all of the outcome measures (p<0.001). A significant interaction was also observed between simulated anisometropia and near work (p<0.05), with the greatest decrement in performance observed during simulated anisometropia in combination with sustained near work. Laterality of the refractive error simulation (ocular dominance) did not significantly influence the outcome measures (p>0.05). A reduction of up to 12% in performance was observed across the range of academic-related measures following sustained near work undertaken during the anisometropic simulation. Conclusion: Simulated hyperopic anisometropia significantly impaired academic–related performance, particularly in combination with sustained near work. The impact of uncorrected habitual anisometropia on academic-related performance in children requires further investigation.
Resumo:
Schizophrenia patients have been shown to be compromised in their ability to recognize facial emotion. This deficit has been shown to be related to negative symptoms severity. However, to date, most studies have used static rather than dynamic depictions of faces. Nineteen patients with schizophrenia were compared with seventeen controls on 2 tasks; the first involving the discrimination of facial identity, emotion, and butterfly wings; the second testing emotion recognition using both static and dynamic stimuli. In the first task, the patients performed more poorly than controls for emotion discrimination only, confirming a specific deficit in facial emotion recognition. In the second task, patients performed more poorly in both static and dynamic facial emotion processing. An interesting pattern of associations suggestive of a possible double dissociation emerged in relation to correlations with symptom ratings: high negative symptom ratings were associated with poorer recognition of static displays of emotion, whereas high positive symptom ratings were associated with poorer recognition of dynamic displays of emotion. However, while the strength of associations between negative symptom ratings and accuracy during static and dynamic facial emotion processing was significantly different, those between positive symptom ratings and task performance were not. The results confirm a facial emotion-processing deficit in schizophrenia using more ecologically valid dynamic expressions of emotion. The pattern of findings may reflect differential patterns of cortical dysfunction associated with negative and positive symptoms of schizophrenia in the context of differential neural mechanisms for the processing of static and dynamic displays of facial emotion.
Resumo:
While the neural regions associated with facial identity recognition are considered to be well defined, the neural correlates of non-moving and moving images of facial emotion processing are less clear. This study examined the brain electrical activity changes in 26 participants (14 males M = 21.64, SD = 3.99; 12 females M = 24.42, SD = 4.36), during a passive face viewing task, a scrambled face task and separate emotion and gender face discrimination tasks. The steady state visual evoked potential (SSVEP) was recorded from 64-electrode sites. Consistent with previous research, face related activity was evidenced at scalp regions over the parieto-temporal region approximately 170 ms after stimulus presentation. Results also identified different SSVEP spatio-temporal changes associated with the processing of static and dynamic facial emotions with respect to gender, with static stimuli predominately associated with an increase in inhibitory processing within the frontal region. Dynamic facial emotions were associated with changes in SSVEP response within the temporal region, which are proposed to index inhibitory processing. It is suggested that static images represent non-canonical stimuli which are processed via different mechanisms to their more ecologically valid dynamic counterparts.
Resumo:
Theoretical accounts suggest that mirror neurons play a crucial role in social cognition. The current study used transcranial-magnetic stimulation (TMS) to investigate the association between mirror neuron activation and facialemotion processing, a fundamental aspect of social cognition, among healthy adults (n = 20). Facial emotion processing of static (but not dynamic) images correlated significantly with an enhanced motor response, proposed to reflect mirror neuron activation. These correlations did not appear to reflect general facial processing or pattern recognition, and provide support to current theoretical accounts linking the mirror neuron system to aspects of social cognition. We discuss the mechanism by which mirror neurons might facilitate facial emotion recognition.
Resumo:
This thesis examined the extent to which individual differences, as conceptualised by the revised Reinforcement Sensitivity Theory, influenced young drivers' information processing and subsequent acceptance of anti-speeding messages. Using a multi-method approach, the findings highlighted the utility of combining objective measures (a cognitive response time task and electroencephalography) with self-report measures to assess message processing and message acceptance, respectively. This body of research indicated that responses to anti-speeding messages may differ depending on an individual's personality disposition. Overall, the research provided further insight into the development of message strategies to target high risk drivers.
Resumo:
Most of the existing algorithms for approximate Bayesian computation (ABC) assume that it is feasible to simulate pseudo-data from the model at each iteration. However, the computational cost of these simulations can be prohibitive for high dimensional data. An important example is the Potts model, which is commonly used in image analysis. Images encountered in real world applications can have millions of pixels, therefore scalability is a major concern. We apply ABC with a synthetic likelihood to the hidden Potts model with additive Gaussian noise. Using a pre-processing step, we fit a binding function to model the relationship between the model parameters and the synthetic likelihood parameters. Our numerical experiments demonstrate that the precomputed binding function dramatically improves the scalability of ABC, reducing the average runtime required for model fitting from 71 hours to only 7 minutes. We also illustrate the method by estimating the smoothing parameter for remotely sensed satellite imagery. Without precomputation, Bayesian inference is impractical for datasets of that scale.
Resumo:
The identification of cognates between two distinct languages has recently start- ed to attract the attention of NLP re- search, but there has been little research into using semantic evidence to detect cognates. The approach presented in this paper aims to detect English-French cog- nates within monolingual texts (texts that are not accompanied by aligned translat- ed equivalents), by integrating word shape similarity approaches with word sense disambiguation techniques in order to account for context. Our implementa- tion is based on BabelNet, a semantic network that incorporates a multilingual encyclopedic dictionary. Our approach is evaluated on two manually annotated da- tasets. The first one shows that across different types of natural text, our method can identify the cognates with an overall accuracy of 80%. The second one, con- sisting of control sentences with semi- cognates acting as either true cognates or false friends, shows that our method can identify 80% of semi-cognates acting as cognates but also identifies 75% of the semi-cognates acting as false friends.
Resumo:
Texture enhancement is an important component of image processing that finds extensive application in science and engineering. The quality of medical images, quantified using the imaging texture, plays a significant role in the routine diagnosis performed by medical practitioners. Most image texture enhancement is performed using classical integral order differential mask operators. Recently, first order fractional differential operators were used to enhance images. Experimentation with these methods led to the conclusion that fractional differential operators not only maintain the low frequency contour features in the smooth areas of the image, but they also nonlinearly enhance edges and textures corresponding to high frequency image components. However, whilst these methods perform well in particular cases, they are not routinely useful across all applications. To this end, we apply the second order Riesz fractional differential operator to improve upon existing approaches of texture enhancement. Compared with the classical integral order differential mask operators and other first order fractional differential operators, we find that our new algorithms provide higher signal to noise values and superior image quality.
Resumo:
This paper describes our participation in the Chinese word segmentation task of CIPS-SIGHAN 2010. We implemented an n-gram mutual information (NGMI) based segmentation algorithm with the mixed-up features from unsupervised, supervised and dictionarybased segmentation methods. This algorithm is also combined with a simple strategy for out-of-vocabulary (OOV) word recognition. The evaluation for both open and closed training shows encouraging results of our system. The results for OOV word recognition in closed training evaluation were however found unsatisfactory.
Resumo:
People with schizophrenia perform poorly when recognising facial expressions of emotion, particularly negative emotions such as fear. This finding has been taken as evidence of a “negative emotion specific deficit”, putatively associated with a dysfunction in the limbic system, particularly the amygdala. An alternative explanation is that greater difficulty in recognising negative emotions may reflect a priori differences in task difficulty. The present study uses a differential deficit design to test the above argument. Facial emotion recognition accuracy for seven emotion categories was compared across three groups. Eighteen schizophrenia patients and one group of healthy age- and gender-matched controls viewed identical sets of stimuli. A second group of 18 age- and gender-matched controls viewed a degraded version of the same stimuli. The level of stimulus degradation was chosen so as to equate overall level of accuracy to the schizophrenia patients. Both the schizophrenia group and the degraded image control group showed reduced overall recognition accuracy and reduced recognition accuracy for fearful and sad facial stimuli compared with the intact-image control group. There were no differences in recognition accuracy for any emotion category between the schizophrenia group and the degraded image control group. These findings argue against a negative emotion specific deficit in schizophrenia.
Resumo:
This study was designed to identify the neural networks underlying automatic auditory deviance detection in 10 healthy subjects using functional magnetic resonance imaging. We measured blood oxygenation level-dependent contrasts derived from the comparison of blocks of stimuli presented as a series of standard tones (50 ms duration) alone versus blocks that contained rare duration-deviant tones (100 ms) that were interspersed among a series of frequent standard tones while subjects were watching a silent movie. Possible effects of scanner noise were assessed by a “no tone” condition. In line with previous positron emission tomography and EEG source modeling studies, we found temporal lobe and prefrontal cortical activation that was associated with auditory duration mismatch processing. Data were also analyzed employing an event-related hemodynamic response model, which confirmed activation in response to duration-deviant tones bilaterally in the superior temporal gyrus and prefrontally in the right inferior and middle frontal gyri. In line with previous electrophysiological reports, mismatch activation of these brain regions was significantly correlated with age. These findings suggest a close relationship of the event-related hemodynamic response pattern with the corresponding electrophysiological activity underlying the event-related “mismatch negativity” potential, a putative measure of auditory sensory memory.