222 resultados para Williams, G. Mennen, 1911-


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cerebral activation associated with performance on a novel task involving two conditions was investigated with functional magnetic resonance imaging (fMRI). In the response initiation condition, subjects nominated the general superordinate category to which each of a series of exemplars (concrete nouns) belonged. In the response suppression condition, subjects were required to nominate a general superordinate category to which each exemplar did not belong, with the instruction that they were not to nominate the same category response twice in a row. Both conditions produced distinct patterns of activation relative to an articulation control condition employing identical stimuli. When initiation and suppression conditions were directly compared, response suppression produced activation in the right frontal pole, orbital frontal cortex and anterior cingulate, left dorsolateral prefrontal cortex and posterior cingulate, and bilaterally in the precuneus, visual association cortex and cerebellum. Response latencies were significantly longer in the suppression condition. Two broadly-defined strategies associated with the correct production of words during the suppression condition were a self-ordered selection from among the superordinate categories identified during the first section of the task and the generation of novel category responses. The neuroanatomical correlates of response initiation, suppression and strategy use are discussed, as are the respective roles of response suppression and strategy generation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08×10 -33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyzed brain MRI data from 372 young adult twins toidentify cortical regions in which gray matter thickness and volume are influenced by genetics. This was achieved using an A/C/E structural equation model that divides the variance of these traits, at each point on the cortex, into additive genetic (A), shared (C), and unique environmental (E) components. A strong genetic influencewas found in frontal and parietal regions. Inaddition, we correlated cortical thickness with full-scale intelligence quotient for comparison with the A/C/E maps, and several regions where cortical structure was correlated with intelligence quotient are under genetic control. These cortical measures may be useful phenotypes to narrow the searchfor quantitative trait lociinfluencing brain structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the advent of functional neuroimaging techniques, in particular functional magnetic resonance imaging (fMRI), we have gained greater insight into the neural correlates of visuospatial function. However, it may not always be easy to identify the cerebral regions most specifically associated with performance on a given task. One approach is to examine the quantitative relationships between regional activation and behavioral performance measures. In the present study, we investigated the functional neuroanatomy of two different visuospatial processing tasks, judgement of line orientation and mental rotation. Twenty-four normal participants were scanned with fMRI using blocked periodic designs for experimental task presentation. Accuracy and reaction time (RT) to each trial of both activation and baseline conditions in each experiment was recorded. Both experiments activated dorsal and ventral visual cortical areas as well as dorsolateral prefrontal cortex. More regionally specific associations with task performance were identified by estimating the association between (sinusoidal) power of functional response and mean RT to the activation condition; a permutation test based on spatial statistics was used for inference. There was significant behavioral-physiological association in right ventral extrastriate cortex for the line orientation task and in bilateral (predominantly right) superior parietal lobule for the mental rotation task. Comparable associations were not found between power of response and RT to the baseline conditions of the tasks. These data suggest that one region in a neurocognitive network may be most strongly associated with behavioral performance and this may be regarded as the computationally least efficient or rate-limiting node of the network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes algorithms that can identify patterns of brain structure and function associated with Alzheimer's disease, schizophrenia, normal aging, and abnormal brain development based on imaging data collected in large human populations. Extraordinary information can be discovered with these techniques: dynamic brain maps reveal how the brain grows in childhood, how it changes in disease, and how it responds to medication. Genetic brain maps can reveal genetic influences on brain structure, shedding light on the nature-nurture debate, and the mechanisms underlying inherited neurobehavioral disorders. Recently, we created time-lapse movies of brain structure for a variety of diseases. These identify complex, shifting patterns of brain structural deficits, revealing where, and at what rate, the path of brain deterioration in illness deviates from normal. Statistical criteria can then identify situations in which these changes are abnormally accelerated, or when medication or other interventions slow them. In this paper, we focus on describing our approaches to map structural changes in the cortex. These methods have already been used to reveal the profile of brain anomalies in studies of dementia, epilepsy, depression, childhood- and adult-onset schizophrenia, bipolar disorder, attention-deficit/hyperactivity disorder, fetal alcohol syndrome, Tourette syndrome, Williams syndrome, and in methamphetamine abusers. Specifically, we describe an image analysis pipeline known as cortical pattern matching that helps compare and pool cortical data over time and across subjects. Statistics are then defined to identify brain structural differences between groups, including localized alterations in cortical thickness, gray matter density (GMD), and asymmetries in cortical organization. Subtle features, not seen in individual brain scans, often emerge when population-based brain data are averaged in this way. Illustrative examples are presented to show the profound effects of development and various diseases on the human cortex. Dynamically spreading waves of gray matter loss are tracked in dementia and schizophrenia, and these sequences are related to normally occurring changes in healthy subjects of various ages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hamstring strain injuries are the predominant injury in many sports, costing athletes and clubs a significant financial and performance burden. Therefore the ability to identify and intervene with individuals who are considered at a high risk of injury is important. One measure which has grown in popularity as an outcome variable following hamstring intervention/prevention studies and rehabilitation is the angle of peak knee flexor torque. This current opinion article will firstly introduce the measure and the processes behind it. Secondly, this article will summarise how the angle of peak knee flexor torque has been suggested to measure hamstring strain injury risk. Finally various limitations will be presented and outlined as to how they may influence the measure. These include the lack of muscle specificity, the common concentric contraction mode of assessment, reliability of the measure, various neural contributions (such as rate of force development and neuromuscular inhibition) as well as the lack of prospective data showing any predictive value in the measure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Canadian C spine rule and NEXUS criteria have identified risk factors for cervical spine injury in adults but not for children. PECARN has developed an 8 variable model for cervical spine injury in children. We sought to identify the mechanism, prevalence of PECARN risk factors, injury patterns, and management of severe Paediatric cervical spine injuries presenting to the major children’s hospitals in Brisbane, Australia. Methods This a retrospective study of the children with cervical spine injuries who presented directly or were referred to the major children’s hospitals in Brisbane over 5 years. Results There were 38 patients with 18 male and 20 female.The mean age was 8.6 years. They were divided into two groups according to their age, (Group 1 < =8 years had 18 (47%) patients, while group 2 (9-15 years) had 20 (53%) patients. Motor vehicle related injuries were the most common (61%) in Group 1 while it was sporting injuries (50%) in group 2. All patients in group 1 had upper cervical injury (C0-C2) while subaxial injuries were most common in group 2 (66.6%). 82% of the patients had 2 or more PECARN risk factors. 18 children (47%) had normal neurological assessment at presentation, 6 (16%) had radicular symptoms, 11 (29%) could not be assessed as they had already been intubated due to the severity of the injury, 3 (8%) had incomplete cord injury. 29 (69%) patients had normal neurological assessment at final follow up and 2 children died from their injuries. Conclusion Our study confirms that younger children sustain upper cervical injuries most commonly secondary to motor vehicle accidents, while the older sustain subaxial injuries from sporting activities. The significant prevalence of the PECARN risk factors among this cohort of patients have led to them being incorporated into a protocol at these hospitals used to assess patients with suspected cervical spinal injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION Radiological evaluation of the paediatric cervical spine can be a challenge due to the normal anatomic variants and injuries that are unique to children. We aimed to identify the usefulness of plain X-rays in comparison with CT and MRI in diagnosing Paediatric cervical spinal injuries. METHODS Retrospective review of imaging studies of children diagnosed with paediatric cervical spine injuries who had presented to two tertiary hospitals in Queensland. RESULTS There were 38 patients with 18 male and 20 female .The mean age was 8.6 years. Plain Cervical Spine X-rays (3views, AP lateral and open mouth views) were done in 34 patients. The remaining 8 children had a suspected head injury and hence had CT scans of their neck done at the time of CT head scan. Of these images taken, X-rays were diagnostic in 28 (82%) patients. CONCLUSION X- Rays still have a role to play in the diagnosis of pediatric cervical spinal injuries and should be considered as the first line in fully conscious patients and their usefulness should not be overlooked in light of the newer imaging modalities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Familial autosomal dominant calcium pyrophosphate dihydrate (CPPD) chondrocalcinosis has previously been mapped to chromosome 5pl5. We have identified a mutation in the ANKH gene that segregates with the disease in a family with this condition. ANKH encodes a putative transmembrane inorganic pyrophosphate (PPi) transport channel. We postulate that loss of function of ANKH causes elevated extracellular PPi levels, predisposing to CPPD crystal deposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective Certain mutations in ANKH, which encodes a multiple-pass transmembrane protein that regulates inorganic pyrophosphate (PPi) transport, are linked to autosomal-dominant familial chondrocalcinosis. This study investigated the potential for ANKH sequence variants to promote sporadic chondrocalcinosis. Methods ANKH variants identified by genomic sequencing were screened for association with chondrocalcinosis in 128 patients with severe sporadic chondrocalcinosis or pseudogout and in ethnically matched healthy controls. The effects of specific variants on expression of common markers were evaluated by in vitro transcription/translation. The function of these variants was studied in transfected human immortalized CH-8 articular chondrocytes. Results Sporadic chondrocalcinosis was associated with a G-to-A transition in the ANKH 5′-untranslated region (5′-UTR) at 4 bp upstream of the start codon (in homozygotes of the minor allele, genotype relative risk 6.0, P = 0.0006; overall genotype association P = 0.02). This -4-bp transition, as well as 2 mutations previously linked with familial and sporadic chondrocalcinosis (+14 bp C-to-T and C-terminal GAG deletion, respectively), but not the French familial chondrocalcinosis kindred 143-bp T-to-C mutation, increased reticulocyte ANKH transcription/ANKH translation in vitro. Transfection of complementary DNA for both the wild-type ANKH and the -4-bp ANKH protein variant promoted increased extracellular PPi in CH-8 cells, but unexpectedly, these ANKH mutants had divergent effects on the expression of extracellular PPi and the chondrocyte hypertrophy marker, type X collagen. Conclusion A subset of sporadic chondrocalcinosis appears to be heritable via a -4-bp G-to-A ANKH 5′-UTR transition that up-regulates expression of ANKH and extracellular PPi in chondrocyte cells. Distinct ANKH mutations associated with heritable chondrocalcinosis may promote disease by divergent effects on extracellular PPi and chondrocyte hypertrophy, which is likely to mediate differences in the clinical phenotypes and severity of the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibrodysplasia Ossificans Progressiva (FOP) is a rare, autosomal dominant condition, classically characterised by heterotopic ossification beginning in childhood and congenital great toe malformations; occurring in response to a c.617 G>A ACVR1 mutation in the functionally important glycine/serine-rich domain of exon 6. Here we describe a novel c.587 T>C mutation in the glycine/serine-rich domain of ACVR1, associated with delayed onset of heterotopic ossification and an exceptionally mild clinical course. Absence of great toe malformations, the presence of early ossification of the cervical spine facets joints, plus mild bilateral camptodactyly of the 5th fingers, together with a novel ACVR1 mutation, are consistent with the 'FOP-variant' syndrome. The c.587 T>C mutation replaces a conserved leucine with proline at residue 196. Modelling of the mutant protein reveals a steric clash with the kinase domain that will weaken interactions with FKBP12 and induce exposure of the glycine/serine-rich repeat. The mutant receptor is predicted to be hypersensitive to ligand stimulation rather than being constitutively active, consistent with the mild clinical phenotype. This case extends our understanding of the 'FOP-variant' syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic role of germanium (Ge) was investigated to improve the electrochemical performance of tin dioxide grown on graphene (SnO(2)/G) nanocomposites as an anode material of lithium ion batteries (LIBs). Germanium dioxide (GeO(20) and SnO(2) nanoparticles (<10 nm) were uniformly anchored on the graphene sheets via a simple single-step hydrothermal method. The synthesized SnO(2)(GeO(2))0.13/G nanocomposites can deliver a capacity of 1200 mA h g(-1) at a current density of 100 mA g(-1), which is much higher than the traditional theoretical specific capacity of such nanocomposites (∼ 702 mA h g(-1)). More importantly, the SnO(2)(GeO(2))0.13/G nanocomposites exhibited an improved rate, large current capability (885 mA h g(-1) at a discharge current of 2000 mA g(-1)) and excellent long cycling stability (almost 100% retention after 600 cycles). The enhanced electrochemical performance was attributed to the catalytic effect of Ge, which enabled the reversible reaction of metals (Sn and Ge) to metals oxide (SnO(2) and GeO(2)) during the charge/discharge processes. Our demonstrated approach towards nanocomposite catalyst engineering opens new avenues for next-generation high-performance rechargeable Li-ion batteries anode materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative ultrasound of the heel captures heel bone properties that independently predict fracture risk and, with bone mineral density (BMD) assessed by X-ray (DXA), may be convenient alternatives for evaluating osteoporosis and fracture risk. We performed a meta-analysis of genome-wide association (GWA) studies to assess the genetic determinants of heel broadband ultrasound attenuation (BUA; n 5 14 260), velocity of sound (VOS; n 5 15 514) and BMD (n 5 4566) in 13 discovery cohorts. Independent replication involved seven cohorts with GWA data (in silico n 5 11 452) and new genotyping in 15 cohorts (de novo n 5 24 902). In combined random effects, meta-analysis of the discovery and replication cohorts, nine single nucleotide polymorphisms (SNPs) had genome-wide significant (P < 5 3 108) associations with heel bone properties. Alongside SNPs within or near previously identified osteoporosis susceptibility genes including ESR1 (6q25.1: rs4869739, rs3020331, rs2982552), SPTBN1 (2p16.2: rs11898505), RSPO3 (6q22.33: rs7741021), WNT16 (7q31.31: rs2908007), DKK1 (10q21.1: rs7902708) and GPATCH1 (19q13.11: rs10416265), we identified a new locus on chromosome 11q14.2 (rs597319 close to TMEM135, a gene recently linked to osteoblastogenesis and longevity) significantly associated with both BUA and VOS (P < 8.23 3 1014). In meta-analyses involving 25 cohorts with up to 14 985 fracture cases, six of 10 SNPs associated with heel bone properties at P < 5 3 106 also had the expected direction of association with any fracture (P < 0.05), including threeSNPswithP < 0.005: 6q22.33 (rs7741021), 7q31.31 (rs2908007) and 10q21.1 (rs7902708). In conclusion, thisGWAstudy reveals the effect of several genescommon to central DXA-derivedBMDand heel ultrasound/DXAmeasures and points to anewgenetic locus with potential implications for better understanding of osteoporosis pathophysiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Paediatric onset inflammatory bowel disease (IBD) may cause alterations in energy requirements and invalidate the use of standard prediction equations. Our aim was to evaluate four commonly used prediction equations for resting energy expenditure (REE) in children with IBD. Methods: Sixty-three children had repeated measurements of REE as part of a longitudinal research study yielding a total of 243 measurements. These were compared with predicted REE from Schofield, Oxford, FAO/WHO/UNU, and Harris-Benedict equations using the Bland-Altman method. Results: Mean (±SD) age of the patients was 14.2 (2.4) years. Mean measured REE was 1566 (336) kcal per day compared with 1491 (236), 1441 (255), 1481 (232), and 1435 (212) kcal per day calculated from Schofield, Oxford, FAO/WHO/UNU, and Harris-Benedict, respectively. While the Schofield equation demonstrated the least difference between measured and predicted REE, it, along with the other equations tested, did not perform uniformly across all subjects, indicating greater errors at either end of the spectrum of energy expenditure. Smaller differences were found for all prediction equations for Crohn's disease compared with ulcerative colitis. Conclusions: Of the commonly used equations, the equation of Schofield should be used in pediatric patients with IBD when measured values are not able to be obtained. (Inflamm Bowel Dis 2010;) Copyright © 2010 Crohn's & Colitis Foundation of America, Inc.