338 resultados para Weighted Lebesgue Space
Resumo:
Grouping users in social networks is an important process that improves matching and recommendation activities in social networks. The data mining methods of clustering can be used in grouping the users in social networks. However, the existing general purpose clustering algorithms perform poorly on the social network data due to the special nature of users' data in social networks. One main reason is the constraints that need to be considered in grouping users in social networks. Another reason is the need of capturing large amount of information about users which imposes computational complexity to an algorithm. In this paper, we propose a scalable and effective constraint-based clustering algorithm based on a global similarity measure that takes into consideration the users' constraints and their importance in social networks. Each constraint's importance is calculated based on the occurrence of this constraint in the dataset. Performance of the algorithm is demonstrated on a dataset obtained from an online dating website using internal and external evaluation measures. Results show that the proposed algorithm is able to increases the accuracy of matching users in social networks by 10% in comparison to other algorithms.
Resumo:
A review of 291 catalogued particles on the bases of particle size, shape, bulk chemistry, and texture is used to establish a reliable taxonomy. Extraterrestrial materials occur in three defined categories: spheres, aggregates and fragments. Approximately 76% of aggregates are of probable extraterrestrial origin, whereas spheres contain the smallest amount of extraterrestrial material (approx 43%). -B.M.
Resumo:
Scientific and programmatic progress toward the development of a cosmic dust collection facility (CDCF) for the proposed space station is documented. Topics addressed include: trajectory sensor concepts; trajectory accuracy and orbital evolution; CDCF pointing direction; development of capture devices; analytical techniques; programmatic progress; flight opportunities; and facility development.
Resumo:
This paper proposes an efficient and online learning control system that uses the successful Model Predictive Control (MPC) method in a model based locally weighted learning framework. The new approach named Locally Weighted Learning Model Predictive Control (LWL-MPC) has been proposed as a solution to learn to control complex and nonlinear Elastic Joint Robots (EJR). Elastic Joint Robots are generally difficult to learn to control due to their elastic properties preventing standard model learning techniques from being used, such as learning computed torque control. This paper demonstrates the capability of LWL-MPC to perform online and incremental learning while controlling the joint positions of a real three Degree of Freedom (DoF) EJR. An experiment on a real EJR is presented and LWL-MPC is shown to successfully learn to control the system to follow two different figure of eight trajectories.
Resumo:
A body of research in conversation analysis has identified a range of structurally-provided positions in which sources of trouble in talk-in-interaction can be addressed using repair. These practices are contained within what Schegloff (1992) calls the repair space. In this paper, I examine a rare instance in which a source of trouble is not resolved within the repair space and comes to be addressed outside of it. The practice by which this occurs is a post-completion account; that is, an account that is produced after the possible completion of the sequence containing a source of trouble. Unlike fourth position repair, the final repair position available within the repair space, this account is not made in preparation for a revised response to the trouble-source turn. Its more restrictive aim, rather, is to circumvent an ongoing difference between the parties involved. I argue that because the trouble is addressed in this manner, and in this particular position, the repair space can be considered as being limited to the sequence in which a source of trouble originates.
Resumo:
Image representations derived from simplified models of the primary visual cortex (V1), such as HOG and SIFT, elicit good performance in a myriad of visual classification tasks including object recognition/detection, pedestrian detection and facial expression classification. A central question in the vision, learning and neuroscience communities regards why these architectures perform so well. In this paper, we offer a unique perspective to this question by subsuming the role of V1-inspired features directly within a linear support vector machine (SVM). We demonstrate that a specific class of such features in conjunction with a linear SVM can be reinterpreted as inducing a weighted margin on the Kronecker basis expansion of an image. This new viewpoint on the role of V1-inspired features allows us to answer fundamental questions on the uniqueness and redundancies of these features, and offer substantial improvements in terms of computational and storage efficiency.
Resumo:
We develop a fast Poisson preconditioner for the efficient numerical solution of a class of two-sided nonlinear space fractional diffusion equations in one and two dimensions using the method of lines. Using the shifted Gr¨unwald finite difference formulas to approximate the two-sided(i.e. the left and right Riemann-Liouville) fractional derivatives, the resulting semi-discrete nonlinear systems have dense Jacobian matrices owing to the non-local property of fractional derivatives. We employ a modern initial value problem solver utilising backward differentiation formulas and Jacobian-free Newton-Krylov methods to solve these systems. For efficient performance of the Jacobianfree Newton-Krylov method it is essential to apply an effective preconditioner to accelerate the convergence of the linear iterative solver. The key contribution of our work is to generalise the fast Poisson preconditioner, widely used for integer-order diffusion equations, so that it applies to the two-sided space fractional diffusion equation. A number of numerical experiments are presented to demonstrate the effectiveness of the preconditioner and the overall solution strategy.
Resumo:
The method of lines is a standard method for advancing the solution of partial differential equations (PDEs) in time. In one sense, the method applies equally well to space-fractional PDEs as it does to integer-order PDEs. However, there is a significant challenge when solving space-fractional PDEs in this way, owing to the non-local nature of the fractional derivatives. Each equation in the resulting semi-discrete system involves contributions from every spatial node in the domain. This has important consequences for the efficiency of the numerical solver, especially when the system is large. First, the Jacobian matrix of the system is dense, and hence methods that avoid the need to form and factorise this matrix are preferred. Second, since the cost of evaluating the discrete equations is high, it is essential to minimise the number of evaluations required to advance the solution in time. In this paper, we show how an effective preconditioner is essential for improving the efficiency of the method of lines for solving a quite general two-sided, nonlinear space-fractional diffusion equation. A key contribution is to show, how to construct suitable banded approximations to the system Jacobian for preconditioning purposes that permit high orders and large stepsizes to be used in the temporal integration, without requiring dense matrices to be formed. The results of numerical experiments are presented that demonstrate the effectiveness of this approach.
Resumo:
We consider a two-dimensional space-fractional reaction diffusion equation with a fractional Laplacian operator and homogeneous Neumann boundary conditions. The finite volume method is used with the matrix transfer technique of Ilić et al. (2006) to discretise in space, yielding a system of equations that requires the action of a matrix function to solve at each timestep. Rather than form this matrix function explicitly, we use Krylov subspace techniques to approximate the action of this matrix function. Specifically, we apply the Lanczos method, after a suitable transformation of the problem to recover symmetry. To improve the convergence of this method, we utilise a preconditioner that deflates the smallest eigenvalues from the spectrum. We demonstrate the efficiency of our approach for a fractional Fisher’s equation on the unit disk.
Resumo:
Supervision in the creative arts is a topic of growing significance since the increase in creative practice PhDs across universities in Australasia. This presentation will provide context of existing discussions in creative practice and supervision. Creative practice – encompassing practice-based or practice-led research – has now a rich history of research surrounding it. Although it is a comparatively new area of knowledge, great advances have been made in terms of how practice can influence, generate, and become research. The practice of supervision is also a topic of interest, perhaps unsurprisingly considering its necessity within the university environment. Many scholars have written much about supervision practices and the importance of the supervisory role, both in academic and more informal forms. However, there is an obvious space in between: there is very little research on supervision practices within creative practice higher degrees, especially at PhD or doctorate level. Despite the existence of creative practice PhD programs, and thus the inherent necessity for successful supervisors, there remain minimal publications and limited resources available. Creative Intersections explores the existing publications and resources, and illustrates that a space for new published knowledge and tools exists.
Resumo:
This paper investigates advanced channel compensation techniques for the purpose of improving i-vector speaker verification performance in the presence of high intersession variability using the NIST 2008 and 2010 SRE corpora. The performance of four channel compensation techniques: (a) weighted maximum margin criterion (WMMC), (b) source-normalized WMMC (SN-WMMC), (c) weighted linear discriminant analysis (WLDA), and; (d) source-normalized WLDA (SN-WLDA) have been investigated. We show that, by extracting the discriminatory information between pairs of speakers as well as capturing the source variation information in the development i-vector space, the SN-WLDA based cosine similarity scoring (CSS) i-vector system is shown to provide over 20% improvement in EER for NIST 2008 interview and microphone verification and over 10% improvement in EER for NIST 2008 telephone verification, when compared to SN-LDA based CSS i-vector system. Further, score-level fusion techniques are analyzed to combine the best channel compensation approaches, to provide over 8% improvement in DCF over the best single approach, (SN-WLDA), for NIST 2008 interview/ telephone enrolment-verification condition. Finally, we demonstrate that the improvements found in the context of CSS also generalize to state-of-the-art GPLDA with up to 14% relative improvement in EER for NIST SRE 2010 interview and microphone verification and over 7% relative improvement in EER for NIST SRE 2010 telephone verification.
Resumo:
Although there is an increasing recognition of the impacts of climate change on communities, residents often resist changing their lifestyle to reduce the effects of the problem. By using a landscape architectural design medium, this paper argues that public space, when designed as an ecological system, has the capacity to create social and environmental change and to increase the quality of the human environment. At the same time, this ecological system can engage residents, enrich the local economy, and increase the social network. Through methods of design, research and case study analysis, an alternative master plan is proposed for a sustainable tourism development in Alacati, Turkey. Our master plan uses local geographical, economic and social information within a sustainable landscape architectural design scheme that addresses the key issues of ecology, employment, public space and community cohesion. A preliminary community empowerment model (CEM) is proposed to manage the designs. The designs address: the coexistence of local agricultural and sustainable energy generation; state of the art water management; and the functional and sustainable social and economic interrelationship of inhabitants, NGOs, and local government.
Resumo:
Collections of solid particles from the Earths' stratosphere have been a significant part of atmospheric research programs since 1965 [1], but it has only been in the past decade that space-related disciplines have provided the impetus for a continued interest in these collections. Early research on specific particle types collected from the stratosphere established that interplanetary dust particles (IDP's) can be collected efficiently and in reasonable abundance using flat-plate collectors [2-4]. The tenacity of Brownlee and co-workers in this subfield of cosmochemistry has led to the establishment of a successful IDP collection and analysis program (using flat-plate collectors on high-flying aircraft) based on samples available for distribution from Johnson Space Center [5]. Other stratospheric collections are made, but the program at JSC offers a unique opportunity to study well-documented, individual particles (or groups of particles) from a wide variety of sources [6]. The nature of the collection and curation process, as well as the timeliness of some sampling periods [7], ensures that all data obtained from stratospheric particles is a valuable resource for scientists from a wide range of disciplines. A few examples of the uses of these stratospheric dust collections are outlined below.
Resumo:
Transport processes within heterogeneous media may exhibit non-classical diffusion or dispersion; that is, not adequately described by the classical theory of Brownian motion and Fick's law. We consider a space fractional advection-dispersion equation based on a fractional Fick's law. The equation involves the Riemann-Liouville fractional derivative which arises from assuming that particles may make large jumps. Finite difference methods for solving this equation have been proposed by Meerschaert and Tadjeran. In the variable coefficient case, the product rule is first applied, and then the Riemann-Liouville fractional derivatives are discretised using standard and shifted Grunwald formulas, depending on the fractional order. In this work, we consider a finite volume method that deals directly with the equation in conservative form. Fractionally-shifted Grunwald formulas are used to discretise the fractional derivatives at control volume faces. We compare the two methods for several case studies from the literature, highlighting the convenience of the finite volume approach.
Resumo:
The space and time fractional Bloch–Torrey equation (ST-FBTE) has been used to study anomalous diffusion in the human brain. Numerical methods for solving ST-FBTE in three-dimensions are computationally demanding. In this paper, we propose a computationally effective fractional alternating direction method (FADM) to overcome this problem. We consider ST-FBTE on a finite domain where the time and space derivatives are replaced by the Caputo–Djrbashian and the sequential Riesz fractional derivatives, respectively. The stability and convergence properties of the FADM are discussed. Finally, some numerical results for ST-FBTE are given to confirm our theoretical findings.