201 resultados para Vision--Aspect religieux--Église catholique--Histoire
Resumo:
This paper overviews the development of a vision-based AUV along with a set of complementary operational strategies to allow reliable autonomous data collection in relatively shallow water and coral reef environments. The development of the AUV, called Starbug, encountered many challenges in terms of vehicle design, navigation and control. Some of these challenges are discussed with focus on operational strategies for estimating and reducing the total navigation error when using lower-resolution sensing modalities. Results are presented from recent field trials which illustrate the ability of the vehicle and associated operational strategies to enable rapid collection of visual data sets suitable for marine research applications.
Resumo:
This paper describes the development and experimental evaluation of a novel vision-based Autonomous Surface Vehicle with the purpose of performing coordinated docking manoeuvres with a target, such as an Autonomous Underwater Vehicle, on the water’s surface. The system architecture integrates two small processor units; the first performs vehicle control and implements a virtual force obstacle avoidance and docking strategy, with the second performing vision-based target segmentation and tracking. Furthermore, the architecture utilises wireless sensor network technology allowing the vehicle to be observed by, and even integrated within an ad-hoc sensor network. The system performance is demonstrated through real-world experiments.
Resumo:
Hot metal carriers (HMCs) are large forklift-type vehicles used to move molten metal in aluminum smelters. This paper reports on field experiments that demonstrate that HMCs can operate autonomously and in particular can use vision as a primary sensor to locate the load of aluminum. We present our complete system but focus on the vision system elements and also detail experiments demonstrating reliable operation of the materials handling task. Two key experiments are described, lasting 2 and 5 h, in which the HMC traveled 15 km in total and handled the load 80 times.
Resumo:
We propose a method for learning specific object representations that can be applied (and reused) in visual detection and identification tasks. A machine learning technique called Cartesian Genetic Programming (CGP) is used to create these models based on a series of images. Our research investigates how manipulation actions might allow for the development of better visual models and therefore better robot vision. This paper describes how visual object representations can be learned and improved by performing object manipulation actions, such as, poke, push and pick-up with a humanoid robot. The improvement can be measured and allows for the robot to select and perform the `right' action, i.e. the action with the best possible improvement of the detector.
Resumo:
The mining industry is highly suitable for the application of robotics and automation technology since the work is arduous, dangerous and often repetitive. This paper describes the development of an automation system for a physically large and complex field robotic system - a 3,500 tonne mining machine (a dragline). The major components of the system are discussed with a particular emphasis on the machine/operator interface. A very important aspect of this system is that it must work cooperatively with a human operator, seamlessly passing the control back and forth in order to achieve the main aim - increased productivity.
Resumo:
The mining industry is highly suitable for the application of robotics and automation technology since the work is both arduous and dangerous. Visual servoing is a means of integrating noncontact visual sensing with machine control to augment or replace operator based control. This article describes two of our current mining automation projects in order to demonstrate some, perhaps unusual, applications of visual servoing, and also to illustrate some very real problems with robust computer vision
Resumo:
The story of Australian cinema is often told as one of brave and often futile struggle by passionate and talented filmmakers to tell Australian stories against the backdrop of an industry dominated locally as well as globally by Hollywood and its agents. In theses narratives international interests are often cast as the villains in the valiant struggle for national filmic self-expression. But such a focus on the national aspects of Australian cinema elides the depth of the international aspect of Australian cinema. A legend has grown around the last decade of the nineteenth century as a time of intense artistic and political activity when a national sensibility welled in writing, poetry and painting. Film too played a part in creating and sharing a vision of a nation, but from the earliest days film also linked Australia to the world.
Resumo:
The International Journal of Robotics Research (IJRR) has a long history of publishing the state-of-the-art in the field of robotic vision. This is the fourth special issue devoted to the topic. Previous special issues were published in 2012 (Volume 31, No. 4), 2010 (Volume 29, Nos 2–3) and 2007 (Volume 26, No. 7, jointly with the International Journal of Computer Vision). In a closely related field was the special issue on Visual Servoing published in IJRR, 2003 (Volume 22, Nos 10–11). These issues nicely summarize the highlights and progress of the past 12 years of research devoted to the use of visual perception for robotics.
Resumo:
Over the past several decades there has been a sharp increase in the number of studies focused on the relationship between vision and driving. The intensified attention to this topic has most likely been stimulated by the lack of an evidence basis for determining vision standards for driving licensure and a poor understanding about how vision impairment impacts driver safety and performance. Clinicians depend on the literature on vision and driving to advise visually impaired patients appropriately about driving fitness. Policy makers also depend on the scientific literature in order to develop guidelines that are evidence-based and are thus fair to persons who are visually impaired. Thus it is important for clinicians and policy makers alike to understand how various study designs and measurement methods should be interpreted so that the conclusions and recommendations they make are not overly broad, too narrowly constrained, or even misguided. We offer a methodological framework to guide interpretations of studies on vision and driving that can also serve as a heuristic for researchers in the area. Here, we discuss research designs and general measurement methods for the study of vision as they relate to driver safety, driver performance, and driver-centered (self-reported) outcomes.
Resumo:
Falls are the leading cause of injury-related morbidity and mortality among older adults. In addition to the resulting physical injury and potential disability after a fall, there are also important psychological consequences, including depression, anxiety, activity restriction, and fear of falling. Fear of falling affects 20 to 43% of community-dwelling older adults and is not limited to those who have previously experienced a fall. About half of older adults who experience fear of falling subsequently restrict their physical and everyday activities, which can lead to functional decline, depression, increased falls risk, and reduced quality of life. Although there is clear evidence that older adults with visual impairment have higher falls risk, only a limited number of studies have investigated fear of falling in older adults with visual impairment and the findings have been mixed. Recent studies suggest increased levels of fear of falling among older adults with various eye conditions, including glaucoma and age-related macular degeneration, whereas other studies have failed to find differences. Interventions, which are still in their infancy in the general population, are also largely unexplored in those with visual impairment. The major aims of this review were to provide an overview of the literature on fear of falling, its measurement, and risk factors among older populations, with specific focus on older adults with visual impairment, and to identify directions for future research in this area.
Resumo:
The mining industry presents us with a number of ideal applications for sensor based machine control because of the unstructured environment that exists within each mine. The aim of the research presented here is to increase the productivity of existing large compliant mining machines by retrofitting with enhanced sensing and control technology. The current research focusses on the automatic control of the swing motion cycle of a dragline and an automated roof bolting system. We have achieved: * closed-loop swing control of an one-tenth scale model dragline; * single degree of freedom closed-loop visual control of an electro-hydraulic manipulator in the lab developed from standard components.
Resumo:
This paper details the design and performance assessment of a unique collision avoidance decision and control strategy for autonomous vision-based See and Avoid systems. The general approach revolves around re-positioning a collision object in the image using image-based visual servoing, without estimating range or time to collision. The decision strategy thus involves determining where to move the collision object, to induce a safe avoidance manuever, and when to cease the avoidance behaviour. These tasks are accomplished by exploiting human navigation models, spiral motion properties, expected image feature uncertainty and the rules of the air. The result is a simple threshold based system that can be tuned and statistically evaluated by extending performance assessment techniques derived for alerting systems. Our results demonstrate how autonomous vision-only See and Avoid systems may be designed under realistic problem constraints, and then evaluated in a manner consistent to aviation expectations.
Resumo:
Product reviews are the foremost source of information for customers and manufacturers to help them make appropriate purchasing and production decisions. Natural language data is typically very sparse; the most common words are those that do not carry a lot of semantic content, and occurrences of any particular content-bearing word are rare, while co-occurrences of these words are rarer. Mining product aspects, along with corresponding opinions, is essential for Aspect-Based Opinion Mining (ABOM) as a result of the e-commerce revolution. Therefore, the need for automatic mining of reviews has reached a peak. In this work, we deal with ABOM as sequence labelling problem and propose a supervised extraction method to identify product aspects and corresponding opinions. We use Conditional Random Fields (CRFs) to solve the extraction problem and propose a feature function to enhance accuracy. The proposed method is evaluated using two different datasets. We also evaluate the effectiveness of feature function and the optimisation through multiple experiments.