222 resultados para Vehicle inspections
Resumo:
A significant proportion of worker fatalities within Australia result from truck-related incidents. Truck drivers face a number of health and safety concerns. Safety culture, viewed here as the beliefs, attitudes and values shared by an organisation’s workers, which interact with their surrounding context to influence behaviour, may provide a valuable lens for exploring safety-related behaviours in heavy vehicle operations. To date no major research has examined safety culture within heavy vehicle industries. As safety culture provides a means to interpret experiences and generate behaviour, safety culture research should be conducted with an awareness of the context surrounding safety. The current research sought to examine previous health and safety research regarding heavy vehicle operations to profile contextual factors which influence health and safety. A review of 104 peer-reviewed papers was conducted. Findings of these papers were then thematically analysed. A number of behaviours and scenarios linked with crashes and non-crash injuries were identified, along with a selection of health outcomes. Contextual factors which were found to influence these outcomes were explored. These factors were found to originate from government departments, transport organisations, customers and the road and work environment. The identified factors may provide points of interaction, whereby culture may influence health and safety outcomes.
Resumo:
Objectives: The purpose of this study was to investigate the characteristics associated with fatal and non-fatal low-speed vehicle run-over (LSVRO) events in relation to person, incident and injury characteristics, in order to identify appropriate points for intervention and injury prevention. Methods: Data on all known LSVRO events in Queensland, Australia, over 11 calendar years (1999–2009) were extracted from five different databases representing the continuum of care ( prehospital to fatality) and manually linked. Descriptive and multivariate analyses were used to analyse the sample characteristics in relation to demographics, health service usage, outcomes, incident characteristics, and injury characteristics. Results: Of the 1641 LSVRO incidents, 98.4% (n=1615) were non-fatal, and 1.6% were fatal (n=26). Over half the children required admission to hospital (56%, n=921); mean length of stay was 3.4 days. Younger children aged 0–4 years were more frequently injured, and experienced more serious injuries with worse outcomes. Patterns of injury (injury type and severity), injury characteristics (eg, time of injury, vehicle type, driver of vehicle, incident location), and demographic characteristics (such as socioeconomic status, indigenous status, remoteness), varied according to age group. Almost half (45.6%; n=737) the events occurred outside major cities, and approximately 10% of events involved indigenous children. Parents were most commonly the vehicle drivers in fatal incidents. While larger vehicles such as four-wheel drives (4WD) were most frequently involved in LSVRO events resulting in fatalities, cars were most frequently involved in non-fatal events. Conclusions: This is the first study, to the authors’ knowledge, to analyse the characteristics of fatal and non-fatal LSVRO events in children aged 0–15 years on a state-wide basis. Characteristics of LSVRO events varied with age, thus age-specific interventions are required. Children living outside major cities, and indigenous children, were over-represented in these data. Further research is required to identify the burden of injury in these groups.
Resumo:
Background The purpose of this study was to estimate the incidence of fatal and non-fatal Low Speed Vehicle Run Over (LSVRO) events among children aged 0–15 years in Queensland, Australia, at a population level. Methods Fatal and non-fatal LSVRO events that occurred in children resident in Queensland over eleven calendar years (1999-2009) were identified using ICD codes, text description, word searches and medical notes clarification, obtained from five health related data bases across the continuum of care (pre-hospital to fatality). Data were manually linked. Population data provided by the Australian Bureau of Statistics were used to calculate crude incidence rates for fatal and non-fatal LSVRO events. Results There were 1611 LSVROs between 1999–2009 (IR = 16.87/100,000/annum). Incidence of non-fatal events (IR = 16.60/100,000/annum) was 61.5 times higher than fatal events (IR = 0.27/100,000/annum). LSVRO events were more common in boys (IR = 20.97/100,000/annum) than girls (IR = 12.55/100,000/annum), and among younger children aged 0–4 years (IR = 21.45/100000/annum; 39% or all events) than older children (5–9 years: IR = 16.47/100,000/annum; 10–15 years IR = 13.59/100,000/annum). A total of 896 (56.8%) children were admitted to hospital for 24 hours of more following an LSVRO event (IR = 9.38/100,000/annum). Total LSVROs increased from 1999 (IR = 14.79/100,000) to 2009 (IR = 18.56/100,000), but not significantly. Over the 11 year period, there was a slight (non –significant) increase in fatalities (IR = 0.37-0.42/100,000/annum); a significant decrease in admissions (IR = 12.39–5.36/100,000/annum), and significant increase in non-admissions (IR = 2.02-12.77/100,000/annum). Trends over time differed by age, gender and severity. Conclusion This is the most comprehensive, population-based epidemiological study on fatal and non-fatal LSVRO events to date. Results from this study indicate that LSVROs incur a substantial burden. Further research is required on the characteristics and risk factors associated with these events, in order to adequately inform injury prevention. Strategies are urgently required in order to prevent these events, especially among young children aged 0-4 years.
Resumo:
Due to significant increase in vehicular accident and traffic congestions, vehicle to vehicle (V2V) communication based on the intelligent transport system (ITS) was introduced. However, to carry out efficient design and implementation of a reliable vehicular communication systems,a deep knowledge of the propagation channel characteristics in different environments is crucial, in particular the Doppler and pathloss parameters. Therefore, this paper presents an empirical V2V channel characterization and measurement performed under realistic urban, suburban and highway driving conditions in Brisbane, Australia. Based on Lin Cheng statistical Doppler Model (LCDM), values for the RMS Doppler spread and coherence time due to time selective nature of V2V channels were presented. Also, based on Log-distance power law model, values for the mean pathloss exponent and the standard deviation of shadowing were reported for urban, suburban and highway environments. The V2V channel parameters can be useful to system designers for the purpose of evaluating, simulating and developing new protocols and systems.
Empirical vehicle-to-vehicle pathloss modeling in highway, suburban and urban environments at 5.8GHz
Resumo:
In this paper, we present a pathloss characterization for vehicle-to-vehicle (V2V) communications based on empirical data collected from extensive measurement campaign performed under line-of-sight (LOS), non-line-of-sight (NLOS) and varying traffic densities. The experiment was conducted in three different V2V propagation environments: highway, suburban and urban at 5.8GHz. We developed pathloss models for each of the three different V2V environments considered. Based on a log-distance power law model, the values for the pathloss exponent and the standard deviation of shadowing were reported. The average pathloss exponent ranges from 1.77 for highway, 1.68 for the urban to 1.53 for the suburban environment. The reported results can contribute to vehicular network (VANET) simulators and can be used by system designers to develop, evaluate and validate new protocols and system designs under realistic propagation conditions.
Resumo:
Locomotion and autonomy in humanoid robots is of utmost importance in integrating them into social and community service type roles. However, the limited range and speed of these robots severely limits their ability to be deployed in situations where fast response is necessary. While the ability for a humanoid to drive a vehicle would aide in increasing their overall mobility, the ability to mount and dismount a vehicle designed for human occupants is a non-trivial problem. To address this issue, this paper presents an innovative approach to enabling a humanoid robot to mount and dismount a vehicle by proposing a simple mounting bracket involving no moving parts. In conjunction with a purpose built robotic vehicle, the mounting bracket successfully allowed a humanoid Nao robot to mount, dismount and drive the vehicle.
Resumo:
Purpose We designed a visual field test focused on the field utilized while driving to examine associations between field impairment and motor vehicle collision involvement in 2,000 drivers ≥70 years old. Methods The "driving visual field test" involved measuring light sensitivity for 20 targets in each eye, extending 15° superiorly, 30° inferiorly, 60° temporally and 30° nasally. The target locations were selected on the basis that they fell within the field region utilized when viewing through the windshield of a vehicle or viewing the dashboard while driving. Monocular fields were combined into a binocular field based on the more sensitive point from each eye. Severe impairment in the overall field or a region was defined as average sensitivity in the lowest quartile of sensitivity. At-fault collision involvement for five years prior to enrollment was obtained from state records. Poisson regression was used to calculate crude and adjusted rate ratios examining the association between field impairment and at-fault collision involvement. Results Drivers with severe binocular field impairment in the overall driving visual field had a 40% increased rate of at-fault collision involvement (RR 1.40, 95%CI 1.07-1.83). Impairment in the lower and left fields was associated with elevated collision rates (RR 1.40 95%CI 1.07-1.82 and RR 1.49, 95%CI 1.15-1.92, respectively), whereas impairment in the upper and right field regions was not. Conclusions Results suggest that older drivers with severe impairment in the lower or left region of the driving visual field are more likely to have a history of at-fault collision involvement.
Resumo:
The nature of the transport system contributes to public health outcomes in a range of ways. The clearest contribution to public health is in the area of traffic crashes, because of their direct impact on individual death and disability and their direct costs to the health system. Other papers in this conference address these issues. This paper outlines some collaborative research between the Centre for Accident Research and Road Safety - Queensland (CARRS-Q) at QUT and Chinese researchers in areas that have indirect health impacts. Heavy vehicle dynamics: The integrity of the road surface influences crash risk, with ruts, pot-holes and other forms of road damage contributing to increased crash risks. The great majority of damage to the road surface from vehicles is caused by heavy trucks and buses, rather than cars or smaller vehicles. In some cases this damage is due to deliberate overloading, but in other cases it is due to vehicle suspension characteristics that lead to occasional high loads on particular wheels. Together with a visiting researcher and his colleagues, we have used both Queensland and Chinese data to model vehicle suspension systems that reduce the level of load, and hence the level of road damage and resulting crash risk(1-5). Toll worker exposure to vehicle emissions: The increasing construction of highways in China has also involved construction of a large number of toll roads. Tollbooth workers are potentially exposed to high levels of pollutants from vehicles, however the extent of this exposure and how it relates to standards for exposure are not well known. In a study led by a visiting researcher, we conducted a study to model these levels of exposure for a tollbooth in China(6). Noise pollution: The increasing presence of high speed roads in China has contributed to an increase in noise levels. In this collaborative study we modelled noise levels associated with a freeway widening near a university campus, and measures to reduce the noise(7). Along with these areas of research, there are many other areas of transport with health implications that are worthy of exploration. Traffic, noise and pollution contribute to a difficult environment for pedestrians, especially in an ageing society where there are health benefits to increasing physical activity. By building on collaborations such as those outlined, there is potential for a contribution to improved public health by addressing transport issues such as vehicle factors and pollution, and extending the research to other areas of travel activity. 1. Chen, Y., He, J., King, M., Chen, W. and Zhang, W. (2014). Stiffness-damping matching method of an ECAS system based on LQG control. Journal of Central South University, 21:439-446. DOI: 10.1007/s1177101419579 2. Chen, Y., He, J., King, M., Feng, Z. and Chang, W. (2013). Comparison of two suspension control strategies for multi-axle heavy truck. Journal of Central South University, 20(2): 550-562. 3. Chen, Y., He, J., King, M., Chen, W. and Zhang, W. (2013). Effect of driving conditions and suspension parameters on dynamic load-sharing of longitudinal-connected air suspensions. Science China Technological Sciences, 56(3): 666-676. DOI: 10.1007/s11431-012-5091-3 4. Chen, Y., He., J., King, M., Chen, W. and Zhang, W. (2013). Model development and dynamic load-sharing analysis of longitudinal-connected air suspensions. Strojniški Vestnik - Journal of Mechanical Engineering, 59(1):14-24. 5. Chen, Y., He, J., King, M., Liu, H. and Zhang, W. (2013). Dynamic load-sharing of longitudinal-connected air suspensions of a tri-axle semi-trailer. Proceedings of Transportation Research Board Annual Conference, Washington DC, 13-17 January 2013, paper no. 13-1117. 6. He, J., Qi, Z., Hang, W., King, M., and Zhao, C. (2011). Numerical evaluation of pollutant dispersion at a toll plaza based on system dynamics and Computational Fluid Dynamics models. Transportation Research Part C, 19(2011):510-520. 7. Zhang, C., He, J., Wang, Z., Yin, R. and King, M. (2013). Assessment of traffic noise level before and after freeway widening using traffic microsimulation and a refined classic noise prediction method. Proceedings of Transportation Research Board Annual Conference, Washington DC, 13-17 January 2013, paper no. 13-2016.
Resumo:
Accurate modelling of automotive occupant posture is strongly related to the mechanical interaction between human body soft tissue and flexible seat components. This paper presents a finite-element study simulating the deflection of seat cushion foam and supportive seat structures, as well as human buttock and thigh soft tissue when seated. The thigh-buttock surface shell model was based on 95th percentile male subject scan data and made of two layers, covering thin to moderate thigh and buttock proportions. To replicate the effects of skin and fat, the neoprene rubber layer was modelled as a hyperelastic material with viscoelastic behaviour. The analytical seat model is based on a Ford production seat. The result of the finite-element indentation simulation is compared to a previous simulation of an indentation with a hard shell human model of equal geometry, and to the physical indentation result. We conclude that SAE composite buttock form and human-seat indentation of a suspended seat cushion can be validly simulated.
Resumo:
Traffic crashes are the leading cause of death and injury among children aged between 4-14 years1,2 and premature graduation to adult seat belts2,3 and restraint misuse4 are common and known risk factors. Children are believed to prematurely graduate to adult belts and misuse the seat belt in booster seats if uncomfortable2,5,6. Although research has concentrated on educating parents and designing better restraints to reduce errors in use, comfort of the child in the restraint has not been studied. Currently there is no existing method for studying comfort in children in restraint systems, although self-report survey tools and pressure distribution mapping is commonly used to measure comfort among adult in vehicle seats. This poster presents preliminary results from work aimed at developing an appropriate method to measure comfort of children in vehicle restraint systems. The specific aims are to: 1. Examine the potential of using modified adult self-report/survey and pressure distribution mapping in children 2. Develop a video based, objective measure of comfort in children.
Resumo:
This paper overviews the development of a vision-based AUV along with a set of complementary operational strategies to allow reliable autonomous data collection in relatively shallow water and coral reef environments. The development of the AUV, called Starbug, encountered many challenges in terms of vehicle design, navigation and control. Some of these challenges are discussed with focus on operational strategies for estimating and reducing the total navigation error when using lower-resolution sensing modalities. Results are presented from recent field trials which illustrate the ability of the vehicle and associated operational strategies to enable rapid collection of visual data sets suitable for marine research applications.