207 resultados para User Interface (UI) Software-as-a-Service
Resumo:
Service oriented architecture (SOA) is an architectural style for building software systems based on services. Especially in those scenarios where services implement business processes, complex conversations between the services occur. Service choreographies are a means to capture all interaction obligations and constraints from a global perspective. This article introduces choreographies as an important artifact for SOA, compares them to service orchestrations and surveys existing languages for modeling them.
Resumo:
Post-deployment maintenance and evolution can account for up to 75% of the cost of developing a software system. Software refactoring can reduce the costs associated with evolution by improving system quality. Although refactoring can yield benefits, the process includes potentially complex, error-prone, tedious and time-consuming tasks. It is these tasks that automated refactoring tools seek to address. However, although the refactoring process is well-defined, current refactoring tools do not support the full process. To develop better automated refactoring support, we have completed a usability study of software refactoring tools. In the study, we analysed the task of software refactoring using the ISO 9241-11 usability standard and Fitts' List of task allocation. Expanding on this analysis, we reviewed 11 collections of usability guidelines and combined these into a single list of 38 guidelines. From this list, we developed 81 usability requirements for refactoring tools. Using these requirements, the software refactoring tools Eclipse 3.2, Condenser 1.05, RefactorIT 2.5.1, and Eclipse 3.2 with the Simian UI 2.2.12 plugin were studied. Based on the analysis, we have selected a subset of the requirements that can be incorporated into a prototype refactoring tool intended to address the full refactoring process.
Resumo:
Child passenger injury remains a major road safety issue despite advances in biomechanical understanding and child restraint design. In Australia, one intervention with parents to encourage universal and consistent use of the most appropriate restraint as well as draw their attention to critical aspects of installation is the RoadWise Type 1 Child Car Restraints Fitting Service, WA. A mixed methods evaluation of this service was conducted in early 2010. Evaluation results suggest that it has been effective in ensuring good quality training of child restraint fitters. In addition, stakeholder and user satisfaction with the Service is high, with participants agreeing that the Service is valuable to the community, and fitters regarding the training course, materials and post-training support as effective. However, a continuing issue for interventions of this type is whether the parents who need them perceive this need. Evidence from the evaluation suggests that only about 25% of parents who could benefit from the Service actually use it. This may be partly due to parental perceptions that such services are not necessary or relevant to them, or to overconfidence about the ease of installing restraints correctly. Thus there is scope for improving awareness of the Service amongst groups most likely to benefit from it (e.g. new parents) and for alerting parents to the importance of correct installation and getting their self-installed restraints checked. Efforts to inform and influence parents should begin when their children are very young, preferably at or prior to birth and/or before the parent installs the first restraint.
Resumo:
The ninth release of the Toolbox, represents over fifteen years of development and a substantial level of maturity. This version captures a large number of changes and extensions generated over the last two years which support my new book “Robotics, Vision & Control”. The Toolbox has always provided many functions that are useful for the study and simulation of classical arm-type robotics, for example such things as kinematics, dynamics, and trajectory generation. The Toolbox is based on a very general method of representing the kinematics and dynamics of serial-link manipulators. These parameters are encapsulated in MATLAB ® objects - robot objects can be created by the user for any serial-link manipulator and a number of examples are provided for well know robots such as the Puma 560 and the Stanford arm amongst others. The Toolbox also provides functions for manipulating and converting between datatypes such as vectors, homogeneous transformations and unit-quaternions which are necessary to represent 3-dimensional position and orientation. This ninth release of the Toolbox has been significantly extended to support mobile robots. For ground robots the Toolbox includes standard path planning algorithms (bug, distance transform, D*, PRM), kinodynamic planning (RRT), localization (EKF, particle filter), map building (EKF) and simultaneous localization and mapping (EKF), and a Simulink model a of non-holonomic vehicle. The Toolbox also including a detailed Simulink model for a quadcopter flying robot.
Resumo:
With the goal of improving the academic performance of primary and secondary students in Malaysia by 2020, the Malaysian Ministry of Education has made a significant investment in developing a Smart School Project. The aim of this project is to introduce interactive courseware into primary and secondary schools across Malaysia. As has been the case around the world, interactive courseware is regarded as a tool to motivate students to learn meaningfully and enhance learning experiences. Through an initial pilot phase, the Malaysian government has commissioned the development of interactive courseware by a number of developers and has rolled this courseware out to selected schools over the past 12 years. However, Ministry reports and several independent researchers have concluded that its uptake has been limited, and that much of the courseware has not been used effectively in schools. This has been attributed to weaknesses in the interface design of the courseware, which, it has been argued, fails to accommodate the needs of students and teachers. Taking the Smart School Project's science courseware as a sample, this research project has investigated the extent, nature, and reasons for the problems that have arisen. In particular, it has focused on examining the quality and effectivity of the interface design in facilitating interaction and supporting learning experiences. The analysis has been conducted empirically, by first comparing the interface design principles, characteristics and components of the existing courseware against best practice, as described in the international literature, as well as against the government guidelines provided to the developers. An ethnographic study was then undertaken to observe how the courseware is used and received in the classroom, and to investigate the stakeholders' (school principal, teachers and students') perceptions of its usability and effectivity. Finally, to understand how issues may have arisen, a review of the development process has been undertaken and it has been compared to development methods recommended in the literature, as well as the guidelines provided to the developers. The outcomes of the project include an empirical evaluation of the quality of the interface design of the Smart School Project's science courseware; the identification of other issues that have affected its uptake; an evaluation of the development process and, out of this, an extended set of principles to guide the design and development of future Smart School Project courseware to ensure that it accommodates the various stakeholders' needs.
Resumo:
Often CAD models already exist for parts of a geometry being simulated using GEANT4. Direct import of these CAD models into GEANT4 however,may not be possible and complex components may be diffcult to define via other means. Solutions that allow for users to work around the limited support in the GEANT4 toolkit for loading predefined CAD geometries have been presented by others, however these solutions require intermediate file format conversion using commercial software. Here within we describe a technique that allows for CAD models to be directly loaded as geometry without the need for commercial software and intermediate file format conversion. Robustness of the interface was tested using a set of CAD models of various complexity; for the models used in testing, no import errors were reported and all geometry was found to be navigable by GEANT4. Funding source: Cancer Australia (Department of Health and Ageing) Research Grant 614217
Resumo:
This article investigates the ethnographic methodological question of how the researcher observes objectively while being part of the problem they are observing. It uses a case study of ABC Pool to argue a cooperative approach that combines the roles of the ethnographer with that of a community manager who assists in constructing a true representation of the researched environment. By using reflexivity as a research tool, the ethnographer engages in a process to self-check their personal presumptions and prejudices, and to strengthen the constructed representation of the researched environment. This article also suggests combining management and expertise research from the social sciences with ethnography, to understand and engage with the research field participants more intimately - which, ultimately, assists in gathering and analysing richer qualitative data.
Resumo:
Our paper approaches Twitter through the lens of “platform politics” (Gillespie, 2010), focusing in particular on controversies around user data access, ownership, and control. We characterise different actors in the Twitter data ecosystem: private and institutional end users of Twitter, commercial data resellers such as Gnip and DataSift, data scientists, and finally Twitter, Inc. itself; and describe their conflicting interests. We furthermore study Twitter’s Terms of Service and application programming interface (API) as material instantiations of regulatory instruments used by the platform provider and argue for a more promotion of data rights and literacy to strengthen the position of end users.
Resumo:
This paper argues from the standpoint that embedding Indigenous knowledge and perspectives in Australian curricula occurs within a space of tension, ‘the cultural interface’ (Nakata, 2002), in negotiation and contestation with other dominant knowledge systems. In this interface, Indigenous knowledge (IK) is in a state of constancy and flux, invisible and simultaneously pronounced depending on the teaching and learning contexts. More often than not, IK competes for validity and is vexed by questions of racial and cultural authenticity, and therefore struggles to be located centrally in educational systems, curricula and pedagogies. Interrogating normative western notions of what constitutes authentic or legitimate knowledge is critical to teaching Indigenous studies and embedding IK. The inclusion (and exclusion) of IK at the interface is central to developing curriculum that allows teachers to test and prod, create new knowledge and teaching approaches. From this perspective, we explore Indigenous Australian pre-service teachers’ experiences of pedagogical relationships within the teaching habitus of Australian classrooms. Our study is engaged with the strategic transgressions of praxis. We contend that tensions that participant Indigenous Australian pre-service teachers experience mirror the broader (and unresolved) political status of Indigenous people and thus where and why IK is strategically deployed as ‘new’ or ‘old knowledge within Australian liberal democratic systems of curriculum and schooling. It is significant to discuss the formation and transformation of the pedagogical cultural identity of the teaching profession within which Indigenous and non-Indigenous pre-service teachers are employed.
Resumo:
miRDeep and its varieties are widely used to quantify known and novel micro RNA (miRNA) from small RNA sequencing (RNAseq). This article describes miRDeep*, our integrated miRNA identification tool, which is modeled off miRDeep, but the precision of detecting novel miRNAs is improved by introducing new strategies to identify precursor miRNAs. miRDeep* has a user-friendly graphic interface and accepts raw data in FastQ and Sequence Alignment Map (SAM) or the binary equivalent (BAM) format. Known and novel miRNA expression levels, as measured by the number of reads, are displayed in an interface, which shows each RNAseq read relative to the pre-miRNA hairpin. The secondary pre-miRNA structure and read locations for each predicted miRNA are shown and kept in a separate figure file. Moreover, the target genes of known and novel miRNAs are predicted using the TargetScan algorithm, and the targets are ranked according to the confidence score. miRDeep* is an integrated standalone application where sequence alignment, pre-miRNA secondary structure calculation and graphical display are purely Java coded. This application tool can be executed using a normal personal computer with 1.5 GB of memory. Further, we show that miRDeep* outperformed existing miRNA prediction tools using our LNCaP and other small RNAseq datasets. miRDeep* is freely available online at http://www.australianprostatecentre.org/research/software/mirdeep-star
Resumo:
This paper describes the use of property graphs for mapping data between AEC software tools, which are not linked by common data formats and/or other interoperability measures. The intention of introducing this in practice, education and research is to facilitate the use of diverse, non-integrated design and analysis applications by a variety of users who need to create customised digital workflows, including those who are not expert programmers. Data model types are examined by way of supporting the choice of directed, attributed, multi-relational graphs for such data transformation tasks. A brief exemplar design scenario is also presented to illustrate the concepts and methods proposed, and conclusions are drawn regarding the feasibility of this approach and directions for further research.
Resumo:
Whole-body computer control interfaces present new opportunities to engage children with games for learning. Stomp is a suite of educational games that use such a technology, allowing young children to use their whole body to interact with a digital environment projected on the floor. To maximise the effectiveness of this technology, tenets of self-determination theory (SDT) are applied to the design of Stomp experiences. By meeting user needs for competence, autonomy, and relatedness our aim is to increase children's engagement with the Stomp learning platform. Analysis of Stomp's design suggests that these tenets are met. Observations from a case study of Stomp being used by young children show that they were highly engaged and motivated by Stomp. This analysis demonstrates that continued application of SDT to Stomp will further enhance user engagement. It also is suggested that SDT, when applied more widely to other whole-body multi-user interfaces, could instil similar positive effects.
Resumo:
The IEEE Wireless LAN standard has been a true success story by enabling convenient, efficient and low-cost access to broadband networks for both private and professional use. However, the increasing density and uncoordinated operation of wireless access points, combined with constantly growing traffic demands have started hurting the users' quality of experience. On the other hand, the emerging ubiquity of wireless access has placed it at the center of attention for network attacks, which not only raises users' concerns on security but also indirectly affects connection quality due to proactive measures against security attacks. In this work, we introduce an integrated solution to congestion avoidance and attack mitigation problems through cooperation among wireless access points. The proposed solution implements a Partially Observable Markov Decision Process (POMDP) as an intelligent distributed control system. By successfully differentiating resource hampering attacks from overload cases, the control system takes an appropriate action in each detected anomaly case without disturbing the quality of service for end users. The proposed solution is fully implemented on a small-scale testbed, on which we present our observations and demonstrate the effectiveness of the system to detect and alleviate both attack and congestion situations.
Resumo:
In the last decade, smartphones have gained widespread usage. Since the advent of online application stores, hundreds of thousands of applications have become instantly available to millions of smart-phone users. Within the Android ecosystem, application security is governed by digital signatures and a list of coarse-grained permissions. However, this mechanism is not fine-grained enough to provide the user with a sufficient means of control of the applications' activities. Abuse of highly sensible private information such as phone numbers without users' notice is the result. We show that there is a high frequency of privacy leaks even among widely popular applications. Together with the fact that the majority of the users are not proficient in computer security, this presents a challenge to the engineers developing security solutions for the platform. Our contribution is twofold: first, we propose a service which is able to assess Android Market applications via static analysis and provide detailed, but readable reports to the user. Second, we describe a means to mitigate security and privacy threats by automated reverse-engineering and refactoring binary application packages according to the users' security preferences.
Resumo:
This paper aims to inform design strategies for smart space technology to enhance libraries as environments for co-working and informal social learning. The focus is on understanding user motivations, behaviour, and activities in the library when there is no programmed agenda. The study analyses gathered data over five months of ethnographic research at ‘The Edge’ – a bookless library space at the State Library of Queensland in Brisbane, Australia, that is explicitly dedicated to co-working, social learning, peer collaboration, and creativity around digital culture and technology. The results present five personas that embody people’s main usage patterns as well as motivations, attitudes, and perceived barriers to social learning. It appears that most users work individually or within pre-organised groups, but usually do not make new connections with co-present, unacquainted users. Based on the personas, four hybrid design dimensions are suggested to improve the library as a social interface for shared learning encounters across physical and digital spaces. The findings in this paper offer actionable knowledge for managers, decision makers, and designers of technology-enhanced library spaces and similar collaboration and co-working spaces.