181 resultados para TRANSPARENT
Resumo:
The development of novel organic polymer thin films is essential for the advancement of many emerging fields including organic electronics and biomedical coatings. In this study, the effect of synthesis conditions, namely radio frequency (rf) deposition power, on the material properties of polyterpenol thin films derived from nonsynthetic environmentally friendly monomer was investigated. At lower deposition powers, the polyterpenol films preserved more of the original monomer constituents, such as hydroxy functional groups; however, they were also softer and more hydrophilic compared to polymers fabricated at higher power. Enhanced monomer fragmentation and consequent reduction in the presence of the polar groups in the structure of the high-power samples reduced their optical band gap value from 2.95 eV for 10 W to 2.64 eV for 100 W. Regardless of deposition power, all samples were found to be optically transparent with smooth, defect-free, and homogenous surfaces.
Resumo:
The effect of material properties of an environmentally friendly, optically transparent dielectric material, polyterpenol, on the carrier transients within the pentacene-based double-layer MTM device was investigated. Polyterpenol films were RF plasma polymerised under varied process conditions, with resultant films differing in surface chemistry and morphology. Independent of type of polyterpenol, time-resolved EFISHG study of IZO/polyterpenol/pentacene/Au structures showed similar transient behaviour with carriers injected into pentacene from Au electrode only, confirming polyterpenol to be a suitable blocking layer for visualisation of single-species carrier transportation during charging and discharging under different bias conditions. Polyterpenol fabricated under higher input power show better promise due to higher chemical and thermal stability, improved uniformity, and absence of defects.
Resumo:
A non-synthetic polymer material, polyterpenol, was fabricated using a dry polymerization process namely RF plasma polymerization from an environmentally friendly monomer and its surface, optical and electrical properties investigated. Polyterpenol films were found to be transparent over the visible wavelength range, with a smooth surface with an average roughness of less than 0.4 nm and hardness of 0.4 GPa. The dielectric constant of 3.4 for polyterpenol was higher than that of the conventional polymer materials used in the organic electronic devices. The non-synthetic polymer material was then implemented as a surface modification of the gate insulator in field effect transistor (OFET) and the properties of the device were examined. In comparison to the similar device without the polymer insulating layer, the polyterpenol based OFET device showed significant improvements. The addition of the polyterpenol interlayer in the OFET shifted the threshold voltage significantly; + 20 V to -3 V. The presence of trapped charge was not observed in the polyterpenol interlayer. This assisted in the improvement of effective mobility from 0.012 to 0.021 cm 2/Vs. The switching property of the polyterpenol based OFET was also improved; 107 compared to 104. The results showed that the non-synthetic polyterpenol polymer film is a promising candidate of insulators in electronic devices.
Resumo:
Poly(linalool) thin films were fabricated using RF plasma polymerisation. All films were found to be smooth, defect-free surfaces with average roughness of 0.44 nm. The FTIR analysis of the polymer showed a notable reduction in –OH moiety and complete dissociation of C=C unsaturation compared to the monomer, and presence of a ketone band absent from the spectrum of the monomer. Poly(linalool) were characterised by chain branching and a large quantity of short polymer chains. Films were optically transparent, with refractive index and extinction coefficient of 1.55 and 0.001 (at 500 nm) respectively, indicating a potential application as an encapsulating (protective) coating for circuit boards. The optical band gap was calculated to be 2.82 eV, which is in the semiconducting energy gap region.
Resumo:
After more than twenty years of basic and applied research, the use of nanotechnology in the design and manufacture of nanoscale materials is rapidly increasing, particularly in commercial applications that span from electronics across renewable energy areas, and biomedical devices. Novel polymers are attracting significant attention for they promise to provide a low−cost high−performance alternative to existing materials. Furthermore, these polymers have the potential to overcome limitations imposed by currently available materials thus enabling the development of new technologies and applications that are currently beyond our reach. This work focuses on the development of a range of new low−cost environmentally−friendly polymer materials for applications in areas of organic (flexible) electronics, optics, and biomaterials. The choice of the monomer reflects the environmentally−conscious focus of this project. Terpinen−4−ol is a major constituent of Australian grown Melaleuca alternifolia (tea tree) oil, attributed with the oil's antimicrobial and anti−inflammatory properties. Plasma polymerisation was chosen as a deposition technique for it requires minimal use of harmful chemicals and produces no hazardous by−products. Polymer thin films were fabricated under varied process conditions to attain materials with distinct physico−chemical, optoelectrical, biological and degradation characteristics. The resultant materials, named polyterpenol, were extensively characterised using a number of well−accepted and novel techniques, and their fundamental properties were defined. Polyterpenol films were demonstrated to be hydrocarbon rich, with variable content of oxygen moieties, primarily in the form of hydroxyl and carboxyl functionalities. The level of preservation of original monomer functionality was shown to be strongly dependent on the deposition energy, with higher applied power increasing the molecular fragmentation and substrate temperature. Polyterpenol water contact angle contact angle increased from 62.7° for the 10 W samples to 76.3° for the films deposited at 100 W. Polymers were determined to resist solubilisation by water, due to the extensive intermolecular and intramolecular hydrogen bonds present, and other solvents commonly employed in electronics and biomedical processing. Independent of deposition power, the surface topography of the polymers was shown to be smooth (Rq <0.5 nm), uniform and defect free. Hardness of polyterpenol coatings increased from 0.33 GPa for 10 W to 0.51 GPa for 100 W (at 500 μN load). Coatings deposited at higher input RF powers showed less mechanical deformation during nanoscratch testing, with no considerable damage, cracking or delamination observed. Independent of the substrate, the quality of film adhesion improved with RF power, suggesting these coatings are likely to be more stable and less susceptible to wear. Independent of fabrication conditions, polyterpenol thin films were optically transparent, with refractive index approximating that of glass. Refractive index increased slightly with deposition power, from 1.54 (10 W) to 1.56 (100 W) at 500 nm. The optical band gap values declined with increasing power, from 2.95 eV to 2.64 eV, placing the material within the range for semiconductors. Introduction of iodine impurity reduced the band gap of polyterpenol, from 2.8 eV to 1.64 eV, by extending the density of states more into the visible region of the electromagnetic spectrum. Doping decreased the transparency and increased the refractive index from 1.54 to 1.70 (at 500 nm). At optical frequencies, the real part of permittivity (k) was determined to be between 2.34 and 2.65, indicating a potential low-k material. These permittivity values were confirmed at microwave frequencies, where permittivity increased with input RF energy – from 2.32 to 2.53 (at 10 GHz ) and from 2.65 to 2.83 (at 20 GHz). At low frequencies, the dielectric constant was determined from current−voltage characteristics of Al−polyterpenol−Al devices. At frequencies below 100 kHz, the dielectric constant varied with RF power, from 3.86 to 4.42 at 1 kHz. For all samples, the resistivity was in order of 10⁸−10⁹ _m (at 6 V), confirming the insulating nature of polyterpenol material. In situ iodine doping was demonstrated to increase the conductivity of polyterpenol, from 5.05 × 10⁻⁸ S/cm to 1.20 × 10⁻⁶ S/cm (at 20 V). Exposed to ambient conditions over extended period of time, polyterpenol thin films were demonstrated to be optically, physically and chemically stable. The bulk of ageing occurred within first 150 h after deposition and was attributed to oxidation and volumetric relaxation. Thermal ageing studies indicated thermal stability increased for the films manufactured at higher RF powers, with degradation onset temperature associated with weight loss shifting from 150 ºC to 205 ºC for 10 W and 100 W polyterpenol, respectively. Annealing the films to 405 °C resulted in full dissociation of the polymer, with minimal residue. Given the outcomes of the fundamental characterisation, a number of potential applications for polyterpenol have been identified. Flexibility, tunable permittivity and loss tangent properties of polyterpenol suggest the material can be used as an insulating layer in plastic electronics. Implementation of polyterpenol as a surface modification of the gate insulator in pentacene-based Field Effect Transistor resulted in significant improvements, shifting the threshold voltage from + 20 V to –3 V, enhancing the effective mobility from 0.012 to 0.021 cm²/Vs, and improving the switching property of the device from 10⁷ to 10⁴. Polyterpenol was demonstrated to have a hole transport electron blocking property, with potential applications in many organic devices, such as organic light emitting diodes. Encapsulation of biomedical devices is also proposed, given that under favourable conditions, the original chemical and biological functionality of terpinen−4−ol molecule can be preserved. Films deposited at low RF power were shown to successfully prevent adhesion and retention of several important human pathogens, including P. aeruginosa, S. aureus, and S. epidermidis, whereas films deposited at higher RF power promoted bacterial cell adhesion and biofilm formation. Preliminary investigations into in vitro biocompatibility of polyterpenol demonstrated the coating to be non−toxic for several types of eukaryotic cells, including Balb/c mice macrophage and human monocyte type (HTP−1 non-adherent) cells. Applied to magnesium substrates, polyterpenol encapsulating layer significantly slowed down in vitro biodegradation of the metal, thus increasing the viability and growth of HTP−1 cells. Recently, applied to varied nanostructured titanium surfaces, polyterpenol thin films successfully reduced attachment, growth, and viability of P. aeruginosa and S. aureus.
Resumo:
Background People admitted to intensive care units and those with chronic health care problems often require long-term vascular access. Central venous access devices (CVADs) are used for administering intravenous medications and blood sampling. CVADs are covered with a dressing and secured with an adhesive or adhesive tape to protect them from infection and reduce movement. Dressings are changed when they become soiled with blood or start to come away from the skin. Repeated removal and application of dressings can cause damage to the skin. The skin is an important barrier that protects the body against infection. Less frequent dressing changes may reduce skin damage, but it is unclear whether this practice affects the frequency of catheter-related infections. Objectives To assess the effect of the frequency of CVAD dressing changes on the incidence of catheter-related infections and other outcomes including pain and skin damage. Search methods In June 2015 we searched: The Cochrane Wounds Specialised Register; The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library); Ovid MEDLINE; Ovid MEDLINE (In-Process & Other Non-Indexed Citations); Ovid EMBASE and EBSCO CINAHL. We also searched clinical trials registries for registered trials. There were no restrictions with respect to language, date of publication or study setting. Selection criteria All randomised controlled trials (RCTs) evaluating the effect of the frequency of CVAD dressing changes on the incidence of catheter-related infections on all patients in any healthcare setting. Data collection and analysis We used standard Cochrane review methodology. Two review authors independently assessed studies for inclusion, performed risk of bias assessment and data extraction. We undertook meta-analysis where appropriate or otherwise synthesised data descriptively when heterogeneous. Main results We included five RCTs (2277 participants) that compared different frequencies of CVAD dressing changes. The studies were all conducted in Europe and published between 1995 and 2009. Participants were recruited from the intensive care and cancer care departments of one children's and four adult hospitals. The studies used a variety of transparent dressings and compared a longer interval between dressing changes (5 to15 days; intervention) with a shorter interval between changes (2 to 5 days; control). In each study participants were followed up until the CVAD was removed or until discharge from ICU or hospital. - Confirmed catheter-related bloodstream infection (CRBSI) One trial randomised 995 people receiving central venous catheters to a longer or shorter interval between dressing changes and measured CRBSI. It is unclear whether there is a difference in the risk of CRBSI between people having long or short intervals between dressing changes (RR 1.42, 95% confidence interval (CI) 0.40 to 4.98) (low quality evidence). - Suspected catheter-related bloodstream infection Two trials randomised a total of 151 participants to longer or shorter dressing intervals and measured suspected CRBSI. It is unclear whether there is a difference in the risk of suspected CRBSI between people having long or short intervals between dressing changes (RR 0.70, 95% CI 0.23 to 2.10) (low quality evidence). - All cause mortality Three trials randomised a total of 896 participants to longer or shorter dressing intervals and measured all cause mortality. It is unclear whether there is a difference in the risk of death from any cause between people having long or short intervals between dressing changes (RR 1.06, 95% CI 0.90 to 1.25) (low quality evidence). - Catheter-site infection Two trials randomised a total of 371 participants to longer or shorter dressing intervals and measured catheter-site infection. It is unclear whether there is a difference in risk of catheter-site infection between people having long or short intervals between dressing changes (RR 1.07, 95% CI 0.71 to 1.63) (low quality evidence). - Skin damage One small trial (112 children) and three trials (1475 adults) measured skin damage. There was very low quality evidence for the effect of long intervals between dressing changes on skin damage compared with short intervals (children: RR of scoring ≥ 2 on the skin damage scale 0.33, 95% CI 0.16 to 0.68; data for adults not pooled). - Pain Two studies involving 193 participants measured pain. It is unclear if there is a difference between long and short interval dressing changes on pain during dressing removal (RR 0.80, 95% CI 0.46 to 1.38) (low quality evidence). Authors' conclusions The best available evidence is currently inconclusive regarding whether longer intervals between CVAD dressing changes are associated with more or less catheter-related infection, mortality or pain than shorter intervals.
Resumo:
With Safe Design and Construction of Machinery, the author presents the results of empirical studies into this significant aspect of safety science in a very readable, well-structured format. The book contains 436 references, 17 tables, one figure and a comprehensive index. Liz Bluff addresses a complex and important, but often neglected domain in OHS – the safety of machinery – in a holistic and profound, yet evidence based analysis; with many applied cases from her studies, which make the book accessible and a pleasant lecture. Although research that led to this remarkable publication might have been primarily focused on the regulators, this book can be highly recommended to all OHS academics and practitioners. It provides an important contribution to the body of knowledge in OHS, and establishes one of the few Australian in-depth insights into the significance of machinery producers, rather than machinery users in the wider framework of risk management. The author bases this fresh perspective on the well-established European Machinery Safety guidelines, and grounds her mixed-methods research predominantly in qualitative analysis of motivation and knowledge, which eventually leads to specific safety outcomes. It should be noted that both European and Australian legal aspects are investigated and considered, as both equally apply to many machinery exporters. A detailed description of the research design and methods can be found in an appendix. Overall, the unique combination of quantitative safety performance data and qualitative analysis of safety behaviours form a valuable addition to the understanding of machinery safety. The author must be congratulated on making these complex relationships transparent to the reader through her meticulous inquiry.
Resumo:
Healthy transparent cornea depends upon the regulation of fluid, nutrient and oxygen transport through the tissue to sustain cell metabolism and other critical processes for normal functioning. This research considers the corneal geometry and investigates oxygen distribution using a two-dimensional Monod kinetic model, showing that previous studies make assumptions that lead to predictions of near-anoxic levels of oxygen tension in the limbal regions of the cornea. It also considers the comparison of experimental spatial and temporal data with the predictions of novel mathematical models with respect to distributed mitotic rates during corneal epithelial wound healing.
Resumo:
Reductionist thinking will no longer suffice to address contemporary, complex challenges that defy sectoral, national, or disciplinary boundaries. Furthermore, lessons learned from the past cannot be confidently used to predict outcomes or help guide future actions. The authors propose that the confluence of a number of technology and social disruptors presents a pivotal moment in history to enable real-time, accelerated and integrated action that can adequately support a ‘future earth’ through transformational solutions. Building on more than a decade of dialogues hosted by the International Society for Digital Earth (ISDE), and evolving a briefing note presented to delegates of Pivotal2015, the paper presents an emergent context for collectively addressing spatial information, sustainable development and good governance through three guiding principles for enabling prosperous living in the 21st Century. These are: (1) open data, (2) real world context and (3) informed visualization for decision support. The paper synthesizes an interdisciplinary dialogue to create a credible and positive future vision of collaborative and transparent action for the betterment of humanity and planet. It is intended that the three Pivotal Principles can be used as an elegant framework for action towards the Digital Earth vision, across local, regional, and international communities and organizations.
Resumo:
Description of the work Shrinking Violets is comprised of two half scale garments in laser cut silk organza, developed with a knotting device to allow for disassembly and reassembly. The first is a jacket in layered red organza including black storm flap details. The second is a vest in jade organza with circles of pink organza attached through a pattern of knots. Research Background This practice-led fashion design research sits within the field of Design for Sustainability (DfS) in fashion that seeks to mitigate the environmental and ethical impacts of fashion consumption and production. The research explores new systems of garment construction for DfS, and examines how these systems may involve ‘designing’ new user interactions with the garments. The garments’ construction system allows them to be disassembled and recycled or reassembled by users to form a new garment. Conventional garment design follows a set process of cutting and construction, with pattern pieces permanently machine-stitched together. Garments typically contain multiple fibre types; for example a jacket may be constructed from a shell of wool/polyester, an acetate lining, fusible interlinings, and plastic buttons. These complex inputs mean that textile recycling is highly labour intensive, first to separate the garment pieces and second to sort the multiple fibre types. This difficulty results in poor quality ‘shoddy’ comprised of many fibre types and unsuitable for new apparel, or in large quantities of recyclable textile waste sent to landfill (Hawley 2011). Design-led approaches that consider the garment’s end of life in the design process are a way of addressing this problem. In Gulich’s (2006) analysis, use of single materials is the most effective way to ensure ease of recycling, with multiple materials that can be detached next in effectiveness. Given the low rate of technological innovation in most apparel manufacturing (Ruiz 2011), a challenge for effective recycling is how to develop new manufacturing methods that allow for garments to be more easily disassembled at end-of-life. Research Contribution This project addresses the research question: How can design for disassembly be considered within the fashion design process? I have employed a practice-led methodology in which my design process leads the research, making use of methods of fashion design practice including garment and construction research, fabric and colour research, textile experimentation, drape, patternmaking, and illustration as well as more recent methods such as laser cutting. Interrogating the traditional approaches to garment construction is necessarily a technical process; however fashion design is as much about the aesthetic and desirability of a garment as it is about the garment’s pragmatics or utility. This requires a balance between the technical demands of designing for disassembly with the aesthetic demands of fashion. This led to the selection of luxurious, semi-transparent fabrics in bold floral colours that could be layered to create multiple visual effects, as well as the experimentation with laser cutting for new forms of finishing and fastening the fabrics together. Shrinking Violets makes two contributions to new knowledge in the area of design for sustainability within fashion. The first is in the technical development of apparel modularity through the system of laser cut holes and knots that also become a patterning device. The second contribution lies in the design of a system for users to engage with the garment through its ability to be easily reconstructed into a new form. Research Significance Shrinking Violets was exhibited at the State Library of Queensland’s Asia Pacific Design Library, 1-5 November 2015, as part of The International Association of Societies of Design Research’s (IASDR) biannual design conference. The work was chosen for display by a panel of experts, based on the criteria of design innovation and contribution to new knowledge in design. References Gulich, B. (2006). Designing textile products that are easy to recycle. In Y. Wang (Ed.), Recycling in Textiles (pp. 25-37). London: Woodhead. Hawley, J. M. (2011). Textile recycling options: exploring what could be. In A. Gwilt & T. Rissanen (Eds.), Shaping Sustainable Fashion: Changing the way we make and use clothes (pp. 143 - 155). London: Earthscan. Ruiz, B. (2014). Global Apparel Manufacturing. Retrieved 10 August 2014, from http://clients1.ibisworld.com/reports/gl/industry/default.aspx?entid=470
Resumo:
‘Language is, Language is not’ is an installation comprising wall drawings, a fabric drawing prosthetic, performance and digital video. This work investigates ‘redrawing’ as a revisionist feminist strategy, taking as it’s starting point Mel Bochner’s work ‘Language is not Transparent’ (1970). 'Language is, Language is not' functions as both homage and critique, drawing on the legacy of conceptual art and questioning the engendering of language that it implies. This work was developed and presented for Bus Projects, Melbourne in 2012, and subsequent versions exhibited at Screen Space, Melbourne and Metro Arts Galleries, Brisbane.
Resumo:
Three-dimensional (3D) hierarchical nanoscale architectures comprised of building blocks, with specifically engineered morphologies, are expected to play important roles in the fabrication of 'next generation' microelectronic and optoelectronic devices due to their high surface-to-volume ratio as well as opto-electronic properties. Herein, a series of well-defined 3D hierarchical rutile TiO2 architectures (HRT) were successfully prepared using a facile hydrothermal method without any surfactant or template, simply by changing the concentration of hydrochloric acid used in the synthesis. The production of these materials provides, to the best of our knowledge, the first identified example of a ledgewise growth mechanism in a rutile TiO2 structure. Also for the first time, a Dye-sensitized Solar Cell (DSC) combining a HRT is reported in conjunction with a high-extinction-coefficient metal-free organic sensitizer (D149), achieving a conversion efficiency of 5.5%, which is superior to ones employing P25 (4.5%), comparable to state-of-the-art commercial transparent titania anatase paste (5.8%). Further to this, an overall conversion efficiency 8.6% was achieved when HRT was used as the light scattering layer, a considerable improvement over the commercial transparent/reflector titania anatase paste (7.6%), a significantly smaller gap in performance than has been seen previously.
Resumo:
Strategies for improving the photovoltaic performance of dye-sensitized solar cells (DSSCs) are proposed by modifying highly transparent and highly ordered multilayer mesoporous TiO 2 photoanodes through nitrogen-doping and top-coating with a light-scattering layer. The mesoporous TiO 2 photoanodes were fabricated by an evaporation-induced self-assembly method. In regard to the modification methods, the light-scattering layer as a top-coating was proved to be superior to nitrogen-doping in enhancing not only the power conversion efficiency but also the fill factor of DSSCs. The optimized bifunctional photoanode consisted of a 30-layer mesoporous TiO 2 thin film (4.15 μm) and a Degussa P25 light-scattering top-layer (4 μm), which gives rise to a ∼200% higher cell efficiency than for unmodified cells and a fill factor of 0.72. These advantages are attributed to its higher dye adsorption, better light scattering, and faster photon-electron transport. Such a photoanode configuration provides an efficient way to enhance the energy conversion efficiency of DSSCs.
Resumo:
In the world today there are many ways in which we measure, count and determine whether something is worth the effort or not. In Australia and many other countries, new government legislation is requiring government-funded entities to become more transparent in their practice and to develop a more cohesive narrative about the worth, or impact, for the betterment of society. This places the executives of such entities in a position of needing evaluative thinking and practice to guide how they may build the narrative that documents and demonstrates this type of impact. In thinking about where to start, executives, project and program managers may consider this workshop as a professional development opportunity to explore both the intended and unintended consequences of performance models as tools of evaluation. This workshop will offer participants an opportunity to unpack the place of performance models as an evaluative tool through the following: · What shape does an ethical, sound and valid performance measure for an organization or personnel take? · What role does cultural specificity play in the design and development of a performance model for an organization or for personnel? · How are stakeholders able to identify risk during the design and development of such models? · When and where will dissemination strategies be required? · And so what? How can you determine that your performance model implementation has made a difference now or in the future?
Resumo:
In the first half of the twentieth century the dematerializing of boundaries between enclosure and exposure problematized traditional expectations of the domestic environment. At the same time, as a space of escalating technological control, the modern domestic interior also offered new potential to redefine the meaning and means of habitation. The inherent tension between these opposing forces is particularly evident in the introduction of new electric lighting technology and applications into the modern domestic interior in the mid-twentieth century. Addressing this nexus of technology and domestic psychology, this article examines the critical role of electric lighting in regulating and framing both the public and private occupation of Philip Johnson's New Canaan estate. Exploring the dialectically paired transparent Glass House and opaque Guest House, this study illustrates how Johnson employed electric light to negotiate the visual environment of the estate as well as to help sustain a highly aestheticized domestic lifestyle. Contextualized within the existing literature, this analysis provides a more nuanced understanding of the New Canaan estate as an expression of Johnson's interests as a designer as well as a subversion of traditional suburban conventions.