365 resultados para Stress Crack resistance
Resumo:
This paper examines the way psychologists and others in teh helping professions can deal with stressors in their lives and still work effectively. Three questions will be asked. First "What are the essential ingredients of an environment that supports psychologists going through personal stressors? Second, "What are the personal characteristics and strategies that give resilience to a professional during this period?" and third,"How does the stressor or grieving process influence a psychologist's therapy?" The whole will be fitted into a visual framework and the interaction of the three main variables (client, therapist and stressor) will be explored.
Resumo:
Structural health monitoring (SHM) refers to the procedure used to assess the condition of structures so that their performance can be monitored and any damage can be detected early. Early detection of damage and appropriate retrofitting will aid in preventing failure of the structure and save money spent on maintenance or replacement and ensure the structure operates safely and efficiently during its whole intended life. Though visual inspection and other techniques such as vibration based ones are available for SHM of structures such as bridges, the use of acoustic emission (AE) technique is an attractive option and is increasing in use. AE waves are high frequency stress waves generated by rapid release of energy from localised sources within a material, such as crack initiation and growth. AE technique involves recording these waves by means of sensors attached on the surface and then analysing the signals to extract information about the nature of the source. High sensitivity to crack growth, ability to locate source, passive nature (no need to supply energy from outside, but energy from damage source itself is utilised) and possibility to perform real time monitoring (detecting crack as it occurs or grows) are some of the attractive features of AE technique. In spite of these advantages, challenges still exist in using AE technique for monitoring applications, especially in the area of analysis of recorded AE data, as large volumes of data are usually generated during monitoring. The need for effective data analysis can be linked with three main aims of monitoring: (a) accurately locating the source of damage; (b) identifying and discriminating signals from different sources of acoustic emission and (c) quantifying the level of damage of AE source for severity assessment. In AE technique, the location of the emission source is usually calculated using the times of arrival and velocities of the AE signals recorded by a number of sensors. But complications arise as AE waves can travel in a structure in a number of different modes that have different velocities and frequencies. Hence, to accurately locate a source it is necessary to identify the modes recorded by the sensors. This study has proposed and tested the use of time-frequency analysis tools such as short time Fourier transform to identify the modes and the use of the velocities of these modes to achieve very accurate results. Further, this study has explored the possibility of reducing the number of sensors needed for data capture by using the velocities of modes captured by a single sensor for source localization. A major problem in practical use of AE technique is the presence of sources of AE other than crack related, such as rubbing and impacts between different components of a structure. These spurious AE signals often mask the signals from the crack activity; hence discrimination of signals to identify the sources is very important. This work developed a model that uses different signal processing tools such as cross-correlation, magnitude squared coherence and energy distribution in different frequency bands as well as modal analysis (comparing amplitudes of identified modes) for accurately differentiating signals from different simulated AE sources. Quantification tools to assess the severity of the damage sources are highly desirable in practical applications. Though different damage quantification methods have been proposed in AE technique, not all have achieved universal approval or have been approved as suitable for all situations. The b-value analysis, which involves the study of distribution of amplitudes of AE signals, and its modified form (known as improved b-value analysis), was investigated for suitability for damage quantification purposes in ductile materials such as steel. This was found to give encouraging results for analysis of data from laboratory, thereby extending the possibility of its use for real life structures. By addressing these primary issues, it is believed that this thesis has helped improve the effectiveness of AE technique for structural health monitoring of civil infrastructures such as bridges.
Resumo:
Academic pressure among adolescents is a major risk factor for poor mental health and suicide and other harmful behaviours. While this is a worldwide phenomenon, it appears to be especially pronounced in China and other East Asian countries. Despite a growing body of research into adolescent mental health in recent years, the multiple constructs within the ‘educational stress’ phenomenon have not been clearly articulated in Chinese contexts. Further, the individual, family, school and peer influencing factors for educational stress and its associations with adolescent mental health are not well understood. An in-depth investigation may provide important information for the ongoing educational reform in Mainland China with a special focus on students’ mental health and wellbeing. The primary goal of this study was to examine the relative contribution of educational stress to poor mental health, in comparison to other well-known individual, family, school and peer factors. Another important task was to identify significant risk factors for educational stress. In addition, due to the lack of a culturally suitable instrument for educational stress in this population, a new tool – the Educational Stress Scale for Adolescents (ESSA) was initially developed in this study and tested for reliability and validity. A self-administered questionnaire was used to collect information from convenient samples of secondary school students in Shandong, China. The pilot survey was conducted with 347 students (grades 8 and 11) to test the psychometric properties of the ESSA and other scales or questions in the questionnaire. Based on factor analysis and reliability and validity testing, the 16-item scale (the ESSA) with five factors showed adequate to good internal consistency, 2-week test-retest reliability, and satisfactory concurrent and predictive validity. Its factor structure was further demonstrated in the main survey with a confirmatory factor analysis illustrating a good fit of the proposed model based on a confirmatory factor analysis. The reliabilities of other scales and questions were also adequate to be used in this study. The main survey was subsequently conducted with a sample of 1627 secondary school (grades 7-12) students to examine the influencing factors of educational stress and its associations with mental health outcomes, including depression, happiness and suicidal behaviours. A wide range of individual, family, school and peer factors were found to have a significant association with the total ESSA and subscale scores. Most of the strong factors for academic stress were school or study-related, including rural school location, low school connectedness, perceived poor academic grades and frequent emotional conflicts with teachers and peers. Unexpectedly, family and parental factors, such as parental bonding, family connectedness and conflicts with parents were found to have little or no association with educational stress. Educational stress was the most predictive variable for depression, but was not strongly associated with happiness. It had a strong association with suicide ideation but not with suicide attempts. Among five subscales of the ESSA, ‘Study despondency’ score had the strongest associations with these mental health measures. Surprising, two subscales, ‘Self-expectation’ and ‘Worry about grades’ showed a protective effect on suicidal behaviours. An additional analysis revealed that although academic pressure was the most commonly reported reason for suicidal thinking, the occurrence of problems in peer relationships such as peer teasing and bullying, and romantic problems had a much stronger relationship with actual attempts. This study provides some insights into the nature and health implications of educational stress among Chinese adolescents. Findings in this study suggest that interventions on educational stress should focus on school environment and academic factors. Intervention programs focused on educational stress may have a high impact on the prevalence of common mental disorders such as depression. Efforts to increase perceived happiness however should cover a wider range of individual, family and school factors. The importance of healthy peer relationships should be adequately emphasised in suicide prevention. In addition, the newly developed scale (the ESSA) demonstrates sound psychometric properties and is expected to be used in future research into academic-related stress among secondary school adolescents.
Resumo:
A major problem in treating alcohol use disorders (AUDs) is the high rate of relapse due to stress and re-exposure to cues or an environment previously associated with alcohol use. Stressors can induce relapse to alcohol-seeking in humans or reinstatement in rodents. Delta opioid peptide receptors (DOP-Rs) play a role in cue-induced reinstatement of ethanol-seeking; however, their role in stress-induced reinstatement of ethanol-seeking is not known. The objective of this study was to determine the role of DOP-Rs in yohimbine-stress-induced reinstatement of ethanol-seeking. Male, Long-Evans rats were trained to self-administer 10% ethanol in daily 30-minute operant self-administration sessions using a FR3 schedule of reinforcement, followed by extinction training. Once extinction criteria were met, we examined the effects of the DOP-R antagonist, SoRI-9409 (0–5 mg/kg, i.p.) on yohimbine (2 mg/kg, i.p.) stress-induced reinstatement. Additionally, DOP-R-stimulated [35S]GTPS binding was measured in brain membranes and plasma levels of corticosterone (CORT) were determined. Pre-treatment with SoRI-9409 decreased yohimbine stress-induced reinstatement of ethanol-seeking but did not affect yohimbine-induced increases in plasma CORT levels. Additionally, yohimbine increased DOP-R-stimulated 35[S]GTPS binding in brain membranes of ethanol-trained rats, an effect that was inhibited by SoRI-9409. This suggests that the DOP-R plays an important role in yohimbine-stress-induced reinstatement of ethanol-seeking behavior, and DOP-R antagonists may be promising candidates for further development as a treatment for AUDs.
Resumo:
Corticotropin releasing factor (CRF) has been shown to induce various behavioral changes related to adaptation to stress. Dysregulation of the CRF system at any point can lead to a variety of psychiatric disorders, including substance use disorders (SUDs). CRF has been associated with stress-induced drug reinforcement. Extensive literature has identified CRF to play an important role in the molecular mechanisms that lead to an increase in susceptibility that precipitates relapse to SUDs. The CRF system has a heterogeneous role in SUDs. It enhances the acute effects of drugs of abuse and is also responsible for the potentiation of drug-induced neuroplasticity evoked during the withdrawal period. We present in this review the brain regions and circuitries where CRF is expressed and may participate in stress-induced drug abuse. Finally, we attempt to evaluate the role of modulating the CRF system as a possible therapeutic strategy for treating the dysregulation of emotional behaviors that result from the acute positive reinforcement of substances of abuse as well as the negative reinforcement produced by withdrawal.
Resumo:
Pressure from study has long been identified as a significant contributor to many mental health problems in school children and adolescents. Students are often stressed by heavy workload, high academic expectation and dissatisfaction with their grades. Excessive amount of this special type of stress (academic stress or educational stress) may then lead to severe psychological symptoms, such as depressed mood, anxious feelings and even suicide thoughts and acts when coping recourses are exhausted. Chinese students are believed to have high academic burden and pressure due to high expectations of their parents and fierce competitions with their peers. Knowledge of the nature and health effects of academic stress may be useful to inform quality education and mental health promotions. This review aims to provide a comprehensive analysis of reported literature regarding educational stress and its relationships with mental health problems worldwide and the current research progress in Chinese adolescents, and to provide directions for future research into this topic in Chinese adolescent populations.
Resumo:
Educational stress is common among school children and adolescents, especially in Asian countries. This study aims to identify factors associated with perceived educational stress among students in China. A cross-sectional questionnaire survey was conducted with 1627 students (Grades 7–12) from six secondary schools in rural and urban areas of Shandong Province. A wide range of individual, family, school and peer factors were associated with stress measured using the Educational Stress Scale for Adolescents (ESSA). Rural school location, low school connectedness, perceived poor academic grades, female gender, older age and frequent emotional conflicts with teachers and peers were among the strongest correlates, and most of them are school- or study-related. Unexpectedly, family and parental factors were found to have little or no association with children’s perceived educational stress. These findings may offer directions for interventions in secondary school settings.
Resumo:
The present research examined the effects of occupational stress in psychiatric nursing on employee well!being using the full Job Strain Model.The Job Strain Model was assessed for its ability to predict employee well!being in terms of job satisfaction and mental health. The original Job Strain Model was expanded to include social support based on previous research concerning the impact of social support on well!being[ In the present study\ both work support and non-work were assessed for their contribution to wellbeing.The results of this study indicate that the full Job Strain Model can be used to significantly predict job satisfaction and mental health in this sample of Australian psychiatric nurses. Furthermore social support was shown to be an important component of the Job Strain Model.
Resumo:
Introduction and Methods: This study compared changes in myokine and myogenic genes following resistance exercise (3 sets of 12 repetitions of maximal unilateral knee extension) in 20 elderly men (67.8 ± 1.0 years) and 15 elderly women (67.2 ± 1.5 years). Results: Monocyte chemotactic protein (MCP)-1, macrophage inhibitory protein (MIP)-1β, interleukin (IL)-6 and MyoD mRNA increased significantly (P < 0.05), whereas myogenin and myostatin mRNA decreased significantly after exercise in both groups. Macrophage-1 (Mac-1) and MCP-3 mRNA did not change significantly after exercise in either group. MIP-1β, Mac-1 and myostatin mRNA were significantly higher before and after exercise in men compared with women. In contrast, MCP-3 and myogenin mRNA were significantly higher before and after exercise in the women compared with the men. Conclusions: In elderly individuals, gender influences the mRNA expression of certain myokines and growth factors, both at rest and after resistance exercise. These differences may influence muscle regeneration following muscle injury
Resumo:
This study investigated the effect of a fear-based personality trait, as conceptualised in Gray’s revised reinforcement sensitivity theory (RST) by the strength of the fight/flight/freeze system (FFFS), on young people’s driving simulator performance under induced psychosocial stress. Seventy-one young drivers completed the Jackson-5 questionnaire of RST traits, followed by a psychosocial stress or relaxation induction procedure (random allocation to groups) and then a city driving simulator task. Some support was found for the hypothesis that higher FFFS sensitivity would result in poorer driving performance under stress, in terms of significantly poorer hazard responses, possibly due to an increased attentional focus on the aversive cues inherent in the stress induction leaving reduced attentional capacity for the driving task. These results suggest that stress may lead to riskier driving behaviour in individuals with fearful RST personality styles.
Resumo:
There is a notable shortage of empirical research directed at measuring the magnitude and direction of stress effects on performance in a controlled environment. One reason for this is the inherent difficulties in identifying and isolating direct performance measures for individuals. Additionally, most traditional work environments contain a multitude of exogenous factors impacting individual performance, but controlling for all such factors is generally unfeasible (omitted variable bias). Moreover, instead of asking individuals about their self-reported stress levels, we observe workers’ behaviour in situations that can be classified as stressful. For this reason, we have stepped outside the traditional workplace in an attempt to gain greater controllability of these factors using the sports environment as our experimental space. We empirically investigate the relationship between stress and performance, in an extreme pressure situation (football penalty kicks) in a winner take all sporting environment (FIFA World Cup and UEFA European Cup competitions). Specifically, we examine all the penalty shootouts between 1976 and 2008 covering in total 16 events. The results indicate that extreme stressors can have a positive or negative impact on individuals’ performance. On the other hand, more commonly experienced stressors do not affect professionals’ performances.
Resumo:
Dengue is currently the most important arthropod-borne viral disease of humans. Recent work has shown dengue virus displays limited replication in its primary vector, the mosquito Aedes aegypti, when the insect harbors the endosymbiotic bacterium Wolbachia pipientis. Wolbachia-mediated inhibition of virus replication may lead to novel methods of arboviral control, yet the functional and cellular mechanisms that underpin it are unknown.
Resumo:
We examined the effects of progressive resistance training (PRT) and supplementation with calcium-vitamin D(3) fortified milk on markers of systemic inflammation, and the relationship between inflammation and changes in muscle mass, size and strength. Healthy men aged 50-79 years (n = 180) participated in this 18-month randomized controlled trial that comprised a factorial 2 x 2 design. Participants were randomized to (1) PRT + fortified milk supplement, (2) PRT, (3) fortified milk supplement, or (4) a control group. Participants assigned to PRT trained 3 days per week, while those in the supplement groups consumed 400 ml day(-1) of milk containing 1,000 mg calcium plus 800 IU vitamin D(3). We collected venous blood samples at baseline, 12 and 18 months to measure the serum concentrations of IL-6, TNF-alpha and hs-CRP. There were no exercise x supplement interactions, but serum IL-6 was 29% lower (95% CI, -62, 0) in the PRT group compared with the control group after 12 months. Conversely, IL-6 was 31% higher (95% CI, -2, 65) in the supplement group compared with the non-supplemented groups after 12 and 18 months. These between-group differences did not persist after adjusting for changes in fat mass. In the PRT group, mid-tibia muscle cross-sectional area increased less in men with higher pre-training inflammation compared with those men with lower inflammation (net difference similar to 2.5%, p < 0.05). In conclusion, serum IL-6 concentration decreased following PRT, whereas it increased after supplementation with fortified milk concomitant with changes in fat mass. Furthermore, low-grade inflammation at baseline restricted muscle hypertrophy following PRT.
Resumo:
Scope: We examined whether dietary supplementation with fish oil modulates inflammation, fibrosis and oxidative stress following obstructive renal injury. Methods and results: Three groups of Sprague-Dawley rats (n = 16 per group) were fed for 4 wk on normal rat chow (oleic acid), chow containing fish oil (33 g eicosapentaenoic acid and 26 g docosahexaenoic acid per kg diet), or chow containing safflower oil (60 g linoleic acid per kg diet). All diets contained 7% fat. After 4 wk, the rats were further subdivided into four smaller groups (n = 4 per group). Unilateral ureteral obstruction was induced in three groups (for 4, 7 and 14 days). The fourth group for each diet did not undergo surgery, and was sacrificed as controls at 14 days. When rats were sacrificed, plasma and portions of the kidneys were removed and frozen; other portions of kidney tissue were fixed and prepared for histology. Compared with normal chow and safflower oil, fish oil attenuated collagen deposition, macrophage infiltration, TGF-beta expression, apoptosis, and tissue levels of arachidonic acid, MIP-1 alpha, IL-1 beta, MCP-1 and leukotriene B(4). Compared with normal chow, fish oil increased the expression of HO-1 protein in kidney tissue. Conclusions: Fish oil intake reduced inflammation, fibrosis and oxidative stress following obstructive renal injury.
Resumo:
Carbon nanotubes (CNTs) have excellent electrical, mechanical and electromechanical properties. When CNTs are incorporated into polymers, electrically conductive composites with high electrical conductivity at very low CNT content (often below 1% wt CNT) result. Due to the change in electrical properties under mechanical load, carbon nanotube/polymer composites have attracted significant research interest especially due to their potential for application in in-situ monitoring of stress distribution and active control of strain sensing in composite structures or as strain sensors. To sucessfully develop novel devices for such applications, some of the major challenges that need to be overcome include; in-depth understanding of structure-electrical conductivity relationships, response of the composites under changing environmental conditions and piezoresistivity of different types of carbon nanotube/polymer sensing devices. In this thesis, direct current (DC) and alternating current (AC) conductivity of CNT-epoxy composites was investigated. Details of microstructure obtained by scanning electron microscopy were used to link observed electrical properties with structure using equivalent circuit modeling. The role of polymer coatings on macro and micro level electrical conductivity was investigated using atomic force microscopy. Thermal analysis and Raman spectroscopy were used to evaluate the heat flow and deformation of carbon nanotubes embedded in the epoxy, respectively, and related to temperature induced resistivity changes. A comparative assessment of piezoresistivity was conducted using randomly mixed carbon nanotube/epoxy composites, and new concept epoxy- and polyurethane-coated carbon nanotube films. The results indicate that equivalent circuit modelling is a reliable technique for estimating values of the resistance and capacitive components in linear, low aspect ratio-epoxy composites. Using this approach, the dominant role of tunneling resistance in determining the electrical conductivity was confirmed, a result further verified using conductive-atomic force microscopy analysis. Randomly mixed CNT-epoxy composites were found to be highly sensitive to mechanical strain and temperature variation compared to polymer-coated CNT films. In the vicinity of the glass transition temperature, the CNT-epoxy composites exhibited pronounced resistivity peaks. Thermal and Raman spectroscopy analyses indicated that this phenomenon can be attributed to physical aging of the epoxy matrix phase and structural rearrangement of the conductive network induced by matrix expansion. The resistivity of polymercoated CNT composites was mainly dominated by the intrinsic resistivity of CNTs and the CNT junctions, and their linear, weakly temperature sensitive response can be described by a modified Luttinger liquid model. Piezoresistivity of the polymer coated sensors was dominated by break up of the conducting carbon nanotube network and the consequent degradation of nanotube-nanotube contacts while that of the randomly mixed CNT-epoxy composites was determined by tunnelling resistance between neighbouring CNTs. This thesis has demonstrated that it is possible to use microstructure information to develop equivalent circuit models that are capable of representing the electrical conductivity of CNT/epoxy composites accurately. New designs of carbon nanotube based sensing devices, utilising carbon nanotube films as the key functional element, can be used to overcome the high temperature sensitivity of randomly mixed CNT/polymer composites without compromising on desired high strain sensitivity. This concept can be extended to develop large area intelligent CNT based coatings and targeted weak-point specific strain sensors for use in structural health monitoring.