194 resultados para Smoothed Particle Hydrodynamics (SPH)
Resumo:
There is considerable scientific interest in personal exposure to ultrafine particles. Owing to their small size, these particles are able to penetrate deep into the lungs, where they may cause adverse respiratory, pulmonary and cardiovascular health effects. This article presents Bayesian hierarchical models for estimating and comparing inhaled particle surface area in the lung.
Resumo:
The role of different chemical compounds, particularly organics, involved in the new particle formation (NPF) and its consequent growth are not fully understood. Therefore, this study was conducted to investigate the chemistry of aerosol particles during NPF events in an urban subtropical environment. Aerosol chemical composition was measured along with particle number size distribution (PNSD) and several other air quality parameters at five sites across an urban subtropical environment. An Aerodyne compact Time-of-Flight Aerosol Mass Spectrometer (c-TOF-AMS) and a TSI Scanning Mobility Particle Sizer (SMPS) measured aerosol chemical composition and PNSD, respectively. Five NPF events, with growth rates in the range 3.3-4.6 nm, were detected at two sites. The NPF events happened on relatively warmer days with lower humidity and higher solar radiation. Temporal percent fractions of nitrate, sulphate, ammonium and organics were modelled using the Generalised Additive Model (GAM), with a basis of penalised spline. Percent fractions of organics increased after the NPF events, while the mass fraction of ammonium and sulphate decreased. This uncovered the important role of organics in the growth of newly formed particles. Three organic markers, factors f43, f44 and f57, were calculated and the f44 vs f43 trends were compared between nucleation and non-nucleation days. f44 vs f43 followed a different pattern on nucleation days compared to non-nucleation days, whereby f43 decreased for vehicle emission generated particles, while both f44 and f43 decreased for NPF generated particles. It was found for the first time that vehicle generated and newly formed particles cluster in different locations on f44 vs f43 plot and this finding can be used as a tool for source apportionment of measured particles.
Resumo:
This thesis presents a comprehensive study on the influences of biodiesel chemical composition and physical properties on diesel engine exhaust particle emissions. It examines biodiesels from several feedstocks having wide variations in their chemical composition (carbon chain length, unsaturation and oxygen content) and physical properties (density, viscosity, surface tension, boiling point etc.), and evaluates their influence on exhaust particle emissions. The outcome of this thesis is significant since it reveals the importance of regulating biodiesels chemical composition in order to ensure lowest possible emissions with better overall performance.
Resumo:
A series of rubber composites were prepared by blending styrene-butadiene rubber (SBR) latex and the different particle sized kaolinites. The thermal stabilities of the rubber composites were characterized using thermogravimetry, digital photography, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. Kaolinite SBR composites showed much greater thermal stability when compared with that of the pure SBR. With the increase of kaolinite particle size, the pyrolysis products became much looser; the char layer and crystalline carbon content gradually decreased in the pyrolysis residues. The pyrolysis residues of the SBR composites filled with the different particle sized kaolinites showed some remarkable changes in structural characteristics. The increase of kaolinite particle size was not beneficial to form the compact and stable crystalline carbon in the pyrolysis process, and resulted in a negative influence in improving the thermal stability of kaolinite/SBR composites.
Size-resolved particle distribution and gaseous concentrations by real-world road tunnel measurement
Resumo:
Measurements of aerosol particle number size distributions (15-700 nm), CO and NOx were performed in a bus tunnel, Australia. Daily mean particle size distributions of mixed diesel/CNG (Compressed Natural Gas) buses traffic flow were determined in 4 consecutive measurement days. EFs (Emission Factors) of Particle size distribution of diesel buses and CNG buses were obtained by MLR (Multiple Linear Regression) methods, particle distributions of diesel buses and CNG buses were observed as single accumulation mode and nuclei-mode separately. Particle size distributions of mixed traffic flow were decomposed by two log-normal fitting curves for each 30 minutes interval mean scans, all the mix fleet PSD emission can be well fitted by the summation of two log-normal distribution curves, and these were composed of nuclei mode curve and accumulation curve, which were affirmed as the CNG buses and diesel buses PN emission curves respectively. Finally, particle size distributions of diesel buses and CNG buses were quantified by statistical whisker-box charts. For log-normal particle size distribution of diesel buses, accumulation mode diameters were 74.5~87.5nm, geometric standard deviations were 1.89~1.98. As to log-normal particle size distribution of CNG buses, nuclei-mode diameters were 21~24 nm, geometric standard deviations were 1.27~1.31.
Resumo:
On the basis of the growing interest on the impact of airborne particles on human exposure as well as the strong debate in Western countries on the emissions of waste incinerators, this work reviewed existing literature to: (i) show the emission factors of ultrafine particles (particles with a diameter less than 100 nm) of waste incinerators, and; (ii) assess the contribution of waste incinerators in terms of ultrafine particles to exposure and dose of people living in the surrounding areas of the plants in order to estimate eventual risks. The review identified only a limited number of studies measuring ultrafine particle emissions, and in general they report low particle number concentrations at the stack (the median value was equal to 5.5×103 part cm-3), in most cases higher than the outdoor background value. The lowest emissions were achieved by utilization of the bag-house filter which has an overall number-based filtration efficiency higher than 99%. Referring to reference case, the corresponding emission factor is equal to 9.1×1012 part min-1, that is lower than one single high-duty vehicle. Since the higher particle number concentrations found in the most contributing microenvironments to the exposure (indoor home, transportation, urban outdoor), the contribution of the waste incinerators to the daily dose can be considered as negligible.
Resumo:
A measurement campaign was conducted from 3 to 19 December 2012 at an urban site of Brisbane, Australia. Size distribution of ions and particle number concentrations were measured to investigate the influence of particle formation and biomass burning on atmospheric ion and particle concentrations. Overall ion and particle number concentrations during the measurement period were found to be (-1.2 x 103 cm-3 | +1.6 x 103 cm-3) and 4.4 x 103, respectively. The results of correlation analysis between concentrations of ions and nitrogen oxides indicated that positive and negative ions originated from similar sources, and that vehicle exhaust emissions had a more significant influence on intermediate/large ions, while cluster ions rapidly attached to larger particles once emitted into the atmosphere. Diurnal variations in ion concentration suggested the enrichment of intermediate and large ions on new particle formation event days, indicating that they were involved in the particle formation processes. Elevated total ions, particularly larger ions, and particle number concentrations were found during biomass burning episodes. This could be due to the attachment of cluster ions onto accumulation mode particles or production of charged particles from biomass burning, which were in turn transported to the measurement site. The results of this work enhance scientific understanding of the sources of atmospheric ions in an urban environment, as well as their interactions with particles during particle formation processes.
Resumo:
The main aim of the present study was to estimate size segregated doses from e-cigarette aerosols as a function of the airway generation number in lung lobes.. After a 2-second puff, 7.7×1010 particles (DTot) with a surface area of 3.6×103 mm2 (STot), and 3.3×1010 particles with a surface area of 4.2×103 mm2 were deposited in the respiratory system for the electronic and conventional cigarettes, respectively. Alveolar and tracheobronchial deposited doses were compared to the ones received by non-smoking individuals in Western countries, showing a similar order of magnitude. Total regional doses (DR), in head and lobar tracheobronchial and alveolar regions, ranged from 2.7×109 to 1.3×1010 particles and 1.1×109 to 5.3×1010 particles, for the electronic and conventional cigarettes, respectively. DR in the right-upper lung lobe was about twice that found in left-upper lobe and 20% greater in right-lower lobe than the left-lower lobe.
Resumo:
The aim of this paper is to determine the suitability of solely stationary measurements for exposure assessment and management applications. For this purpose, quantified inhaled particle surface area (IPSA) doses using both stationary and personal particle exposure monitors were evaluated and compared.
Resumo:
The Air Pollution Model and Chemical Transport Model (TAPM-CTM) framework has been tested and applied originally in Sydney to quantify particle and gaseous concentration (Cope et al, 2014). However, the model performance had not been tested in the south-eastern Queensland region (SEQR), Australia.
Resumo:
Cross-link density, microstructure and mechanical properties of styrene butadiene rubber (SBR) composites filled with different particle sized kaolinites are investigated. With the increase of kaolinite particle size, the cross-link density of the filled SBR composites, the dispersibility and orientation degree of kaolinite particles gradually decrease. Some big cracks in filled rubber composites are distributed along the fringe of kaolinite aggregates, and the absorbance of all the absorption bands of kaolinites gradually increase with the increase of kaolinite particle size. All mechanical property indexes of kaolinite filled SBR composites decrease due to the decrease of cross-linking and reduction of interface interaction between filler and rubber matrix.
Resumo:
Particle Swarm Optimization (PSO) is a biologically inspired computational search and optimization method based on the social behaviors of birds flocking or fish schooling. Although, PSO is represented in solving many well-known numerical test problems, but it suffers from the premature convergence. A number of basic variations have been developed due to solve the premature convergence problem and improve quality of solution founded by the PSO. This study presents a comprehensive survey of the various PSO-based algorithms. As part of this survey, the authors have included a classification of the approaches and they have identify the main features of each proposal. In the last part of the study, some of the topics within this field that are considered as promising areas of future research are listed.
Resumo:
The Lagrangian particle tracking provides an effective method for simulating the deposition of nano- particles as well as micro-particles as it accounts for the particle inertia effect as well as the Brownian excitation. However, using the Lagrangian approach for simulating ultrafine particles has been limited due to computational cost and numerical difficulties. The aim of this paper is to study the deposition of nano-particles in cylindrical tubes under laminar condition using the Lagrangian particle tracking method. The commercial Fluent software is used to simulate the fluid flow in the pipes and to study the deposition and dispersion of nano-particles. Different particle diameters as well as different pipe lengths and flow rates are examined. The results show good agreement between the calculated deposition efficiency and different analytic correlations in the literature. Furthermore, for the nano-particles with higher diameters and when the effect of inertia has a higher importance, the calculated deposition efficiency by the Lagrangian method is less than the analytic correlations based on Eulerian method due to statistical error or the inertia effect.
Resumo:
In this study we present a combinatorial optimization method based on particle swarm optimization and local search algorithm on the multi-robot search system. Under this method, in order to create a balance between exploration and exploitation and guarantee the global convergence, at each iteration step if the distance between target and the robot become less than specific measure then a local search algorithm is performed. The local search encourages the particle to explore the local region beyond to reach the target in lesser search time. Experimental results obtained in a simulated environment show that biological and sociological inspiration could be useful to meet the challenges of robotic applications that can be described as optimization problems.
Resumo:
Different human activities like combustion of fossil fuels, biomass burning, industrial and agricultural activities, emit a large amount of particulates into the atmosphere. As a consequence, the air we inhale contains significant amount of suspended particles, including organic and inorganic solids and liquids, as well as various microorganism, which are solely responsible for a number of pulmonary diseases. Developing a numerical model for transport and deposition of foreign particles in realistic lung geometry is very challenging due to the complex geometrical structure of the human lung. In this study, we have numerically investigated the airborne particle transport and its deposition in human lung surface. In order to obtain the appropriate results of particle transport and deposition in human lung, we have generated realistic lung geometry from the CT scan obtained from a local hospital. For a more accurate approach, we have also created a mucus layer inside the geometry, adjacent to the lung surface and added all apposite mucus layer properties to the wall surface. The Lagrangian particle tracking technique is employed by using ANSYS FLUENT solver to simulate the steady-state inspiratory flow. Various injection techniques have been introduced to release the foreign particles through the inlet of the geometry. In order to investigate the effects of particle size on deposition, numerical calculations are carried out for different sizes of particles ranging from 1 micron to 10 micron. The numerical results show that particle deposition pattern is completely dependent on its initial position and in case of realistic geometry; most of the particles are deposited on the rough wall surface of the lung geometry instead of carinal region.