487 resultados para Relational power
Resumo:
The Australian construction industry is characterized as being a competitive and risky business environment due to lack of cooperation, insufficient trust, ineffective communication and adversarial relationships which are likely lead to poor project performance. Relational contracting (RC) is advocated by literature as an innovative approach to improve the procurement process in the construction industry. Various studies have collectively added to the current knowledge of known RC norms, but there seem to be little effort on investigating the determinants of RC and its efficacy on project outcomes. In such circumstances, there is a lack of evidence and explanation on the manner on how these issues lead to different performance. Simultaneously, the New Engineering Contract (NEC) that embraced the concept of RC is seen as a modern way of contracting and also considered as one of the best approaches to the perennial problem of improving adversarial relationships within the industry. The reality of practice of RC in Australia is investigated through the lens of the NEC. A synthesis of literature views on the concept, processes and tools of RC is first conducted to develop the framework of RC.
Resumo:
The relationship between neuronal acuity and behavioral performance was assessed in the barn owl (Tyto alba), a nocturnal raptor renowned for its ability to localize sounds and for the topographic representation of auditory space found in the midbrain. We measured discrimination of sound-source separation using a newly developed procedure involving the habituation and recovery of the pupillary dilation response. The smallest discriminable change of source location was found to be about two times finer in azimuth than in elevation. Recordings from neurons in its midbrain space map revealed that their spatial tuning, like the spatial discrimination behavior, was also better in azimuth than in elevation by a factor of about two. Because the PDR behavioral assay is mediated by the same circuitry whether discrimination is assessed in azimuth or in elevation, this difference in vertical and horizontal acuity is likely to reflect a true difference in sensory resolution, without additional confounding effects of differences in motor performance in the two dimensions. Our results, therefore, are consistent with the hypothesis that the acuity of the midbrain space map determines auditory spatial discrimination.
Resumo:
Many optical networks are limited in speed and processing capability due to the necessity for the optical signal to be converted to an electrical signal and back again. In addition, electronically manipulated interconnects in an otherwise optical network lead to overly complicated systems. Optical spatial solitons are optical beams that propagate without spatial divergence. They are capable of phase dependent interactions, and have therefore been extensively researched as suitable all optical interconnects for over 20 years. However, they require additional external components, initially high voltage power sources were required, several years later, high power background illumination had replaced the high voltage. However, these additional components have always remained as the greatest hurdle in realising the applications of the interactions of spatial optical solitons as all optical interconnects. Recently however, self-focusing was observed in an otherwise self-defocusing photorefractive crystal. This observation raises the possibility of the formation of soliton-like fields in unbiased self-defocusing media, without the need for an applied electrical field or background illumination. This thesis will present an examination of the possibility of the formation of soliton-like low divergence fields in unbiased self-defocusing photorefractive media. The optimal incident beam and photorefractive media parameters for the formation of these fields will be presented, together with an analytical and numerical study of the effect of these parameters. In addition, preliminary examination of the interactions of two of these fields will be presented. In order to complete an analytical examination of the field propagating through the photorefractive medium, the spatial profile of the beam after propagation through the medium was determined. For a low power solution, it was found that an incident Gaussian field maintains its Gaussian profile as it propagates. This allowed the beam at all times to be described by an individual complex beam parameter, while also allowing simple analytical solutions to the appropriate wave equation. An analytical model was developed to describe the effect of the photorefractive medium on the Gaussian beam. Using this model, expressions for the required intensity dependent change in both the real and imaginary components of the refractive index were found. Numerical investigation showed that under certain conditions, a low powered Gaussian field could propagate in self-defocusing photorefractive media with divergence of approximately 0.1 % per metre. An investigation into the parameters of a Ce:BaTiO3 crystal showed that the intensity dependent absorption is wavelength dependent, and can in fact transition to intensity dependent transparency. Thus, with careful wavelength selection, the required intensity dependent change in both the real and imaginary components of the refractive index for the formation of a low divergence Gaussian field are physically realisable. A theoretical model incorporating the dependence of the change in real and imaginary components of the refractive index on propagation distance was developed. Analytical and numerical results from this model are congruent with the results from the previous model, showing low divergence fields with divergence less than 0.003 % over the propagation length of the photorefractive medium. In addition, this approach also confirmed the previously mentioned self-focusing effect of the self-defocusing media, and provided an analogy to a negative index GRIN lens with an intensity dependent focal length. Experimental results supported the findings of the numerical analysis. Two low divergence fields were found to possess the ability to interact in a Ce:BaTiO3 crystal in a soliton-like fashion. The strength of these interactions was found to be dependent on the degree of divergence of the individual beams. This research found that low-divergence fields are possible in unbiased self-defocusing photorefractive media, and that soliton-like interactions between two of these fields are possible. However, in order for these types of fields to be used in future all optical interconnects, the manipulation of these interactions, together with the ability for these fields to guide a second beam at a different wavelength, must be investigated.
Resumo:
In recent decades, assessment practices within Australian law schools have moved from the overwhelming use of end-of-year closed-book examinations to an increase in the use of a wider range of techniques. This shift is often characterised as providing a ‘better’ learning environment for students, contributing more positively to their own ‘personal development’ within higher education, or, considered along the lines of critical legal thought, as ‘liberating’ them from the ‘conservatising’ and ‘indoctrinating’ effects of the power relations that operate in law schools. This paper seeks to render problematic such liberal-progressive narratives about these changes to law school assessment practices. It will do so by utilising the work of French historian and philosopher Michel Foucault on power, arguing that the current range of assessment techniques demonstrates a shift in the ‘economy’ of power relations within the law school. Rather than ‘liberating’ students from relations of power, these practices actually extend the power relations through which students are governed. This analysis is intended to inform legal education research and assessment practice by providing a far more nuanced conceptual framework than one that seeks to ‘free’ law students from these ‘repressive’ practices, or hopes to ‘objectively’ contribute to their ‘personal development’.
Resumo:
Trees, shrubs and other vegetation are of continued importance to the environment and our daily life. They provide shade around our roads and houses, offer a habitat for birds and wildlife, and absorb air pollutants. However, vegetation touching power lines is a risk to public safety and the environment, and one of the main causes of power supply problems. Vegetation management, which includes tree trimming and vegetation control, is a significant cost component of the maintenance of electrical infrastructure. For example, Ergon Energy, the Australia’s largest geographic footprint energy distributor, currently spends over $80 million a year inspecting and managing vegetation that encroach on power line assets. Currently, most vegetation management programs for distribution systems are calendar-based ground patrol. However, calendar-based inspection by linesman is labour-intensive, time consuming and expensive. It also results in some zones being trimmed more frequently than needed and others not cut often enough. Moreover, it’s seldom practicable to measure all the plants around power line corridors by field methods. Remote sensing data captured from airborne sensors has great potential in assisting vegetation management in power line corridors. This thesis presented a comprehensive study on using spiking neural networks in a specific image analysis application: power line corridor monitoring. Theoretically, the thesis focuses on a biologically inspired spiking cortical model: pulse coupled neural network (PCNN). The original PCNN model was simplified in order to better analyze the pulse dynamics and control the performance. Some new and effective algorithms were developed based on the proposed spiking cortical model for object detection, image segmentation and invariant feature extraction. The developed algorithms were evaluated in a number of experiments using real image data collected from our flight trails. The experimental results demonstrated the effectiveness and advantages of spiking neural networks in image processing tasks. Operationally, the knowledge gained from this research project offers a good reference to our industry partner (i.e. Ergon Energy) and other energy utilities who wants to improve their vegetation management activities. The novel approaches described in this thesis showed the potential of using the cutting edge sensor technologies and intelligent computing techniques in improve power line corridor monitoring. The lessons learnt from this project are also expected to increase the confidence of energy companies to move from traditional vegetation management strategy to a more automated, accurate and cost-effective solution using aerial remote sensing techniques.
Resumo:
One of the impediments to large-scale use of wind generation within power system is its variable and uncertain real-time availability. Due to the low marginal cost of wind power, its output will change the merit order of power markets and influence the Locational Marginal Price (LMP). For the large scale of wind power, LMP calculation can't ignore the essential variable and uncertain nature of wind power. This paper proposes an algorithm to estimate LMP. The estimation result of conventional Monte Carlo simulation is taken as benchmark to examine accuracy. Case study is conducted on a simplified SE Australian power system, and the simulation results show the feasibility of proposed method.
Resumo:
The conventional manual power line corridor inspection processes that are used by most energy utilities are labor-intensive, time consuming and expensive. Remote sensing technologies represent an attractive and cost-effective alternative approach to these monitoring activities. This paper presents a comprehensive investigation into automated remote sensing based power line corridor monitoring, focusing on recent innovations in the area of increased automation of fixed-wing platforms for aerial data collection, and automated data processing for object recognition using a feature fusion process. Airborne automation is achieved by using a novel approach that provides improved lateral control for tracking corridors and automatic real-time dynamic turning for flying between corridor segments, we call this approach PTAGS. Improved object recognition is achieved by fusing information from multi-sensor (LiDAR and imagery) data and multiple visual feature descriptors (color and texture). The results from our experiments and field survey illustrate the effectiveness of the proposed aircraft control and feature fusion approaches.
Resumo:
The potential of distributed reactive power control to improve the voltage profile of radial distribution feeders has been reported in literature by few authors. However, the multiple inverters injecting or absorbing reactive power across a distribution feeder may introduce control interactions and/or voltage instability. Such controller interactions can be alleviated if the inverters are allowed to operate on voltage droop. First, the paper demonstrates that a linear shallow droop line can maintain the steady state voltage profile close to reference, up to a certain level of loading. Then, impacts of the shallow droop line control on line losses and line power factors are examined. Finally, a piecewise linear droop line which can achieve reduced line losses and close to unity power factor at the feeder source is proposed.
Resumo:
Electricity has been the major source of power in most railway systems. Reliable, efficient and safe power distribution to the trains is vitally important to the overall quality of railway service. Like any large-scale engineering system, design, operation and planning of traction power systems rely heavily on computer simulation. This paper reviews the major features on modelling and the general practices for traction power system simulation; and introduces the development of the latest simulation approach with discussions on simulation results and practical applications. Remarks will also be given on the future challenges on traction power system simulation.
Resumo:
This paper examines the affordances of the philosophy and practice of open source and the application of it in developing music education software. In particular I will examine the parallels inherent in the ‘openness’ of pragmatist philosophy in education (Dewey 1916, 1989) such as group or collaborative learning, discovery learning (Bruner 1966) and learning through creative activity with computers (Papert 1980, 1994). Primarily I am interested in ‘relational pedagogies’ (Ruthmann and Dillon In Press) which is in a real sense about the ethics of the transaction between student and teacher in an ecology where technology plays a more significant role. In these contexts relational pedagogies refers to how the music teacher manages their relationships with students and evaluates the affordances of open source technology in that process. It is concerned directly with how the relationship between student and teacher is affected by the technological tools, as is the capacity for music making and learning. In particular technologies that have agency present the opportunity for a partnership between user and technology that enhances the capacity for expressive music making, productive social interaction and learning. In this instance technologies with agency are defined as ones that enhance the capacity to be expressive and perform tasks with virtuosity and complexity where the technology translates simple commands and gestures into complex outcomes. The technology enacts a partnership with the user that becomes both a cognitive and performative amplifier. Specifically we have used this term to describe interactions with generative technologies that use procedural invention as a creative technique to produce music and visual media.
Resumo:
The use of grant contracts to deliver community services is now a significant feature of all Australian government administrations. These contracts are the primary instrument governing the provision of such services to citizens and are largely outside the usual parliamentary review mechanisms and constraints. This article examines the extent of the erosion of fundamental constitutional principles facilitated by the use of private contracts, by applying the principles used in scrutiny of delegated legislation to standard form federal and State community service contracts. It reveals extensive executive power which, if the relationship were founded in legislative instruments rather than in private contract, would have to be justified to Parliament at least and possibly not tolerated.
Resumo:
With examples drawn from media coverage of the War on Terror, the 2003 invasion of Iraq, Hurricane Katrina and the London underground bombings, Cultural Chaos explores the changing relationship between journalism and power in an increasingly globalised news culture. In this new text, Brian McNair examines the processes of cultural, geographic and political dissolution in the post-Cold War era and the rapid evolution of information and communication technologies. He investigates the impact of these trends on domestic and international journalism and on political processes in democratic and authoritarian societies across the world. Written in a lively and accessible style, Cultural Chaos provides students with an overview of the evolution of the sociology of journalism, a critical review of current thinking within media studies and an argument for a revision and renewal of the paradigms that have dominated the field since the early twentieth century. Separate chapters are devoted to new developments such as the rise of the blogosphere and satellite television news and their impact on journalism more generally. Cultural Chaos will be essential reading for all those interested in the emerging globalised news culture of the twenty-first century.