376 resultados para Population Replication Principle
Resumo:
Background: normal ageing processes impact on oropharyngeal swallowing function placing older adults at risk of developing oropharyngeal dysphagia (OD). Anecdotal clinical experience has observed that older patients recovering from hip fracture surgery commonly develop OD post-operatively. Objective: to document the presence of OD following hip fracture surgery, and the factors associated with OD. Methods: one hundred and eighty-one patients with a mean age of 83 years (range: 65–103) admitted to a specialised orthogeriatric unit were assessed for OD post-surgery for hip fracture. Pre-admission, intra-operative and post-operative factors were examined to determine their relationship with the presence of OD. Results: OD was found to be present post-operatively in 34% (n = 61) of the current population. Multivariate logistic regression analyses revealed the presence of pre-existing neurological and respiratory medical co-morbidities, presence of post-operative delirium, age and living in a residential aged care facility prior to hospital admission to be associated with the post-operative OD. Conclusion: these results highlight that OD is present in a large number of the older hip fracture population. Early identification of OD has important implications for the provision of timely dysphagia management that may prevent secondary complications and potentially reduce the hospital length of stay.
Resumo:
Successful inclusive product design requires knowledge about the capabilities, needs and aspirations of potential users and should cater for the different scenarios in which people will use products, systems and services. This should include: the individual at home; in the workplace; for businesses, and for products in these contexts. It needs to reflect the development of theory, tools and techniques as research moves on.
Resumo:
Genetically distinct checkpoints, activated as a consequence of either DNA replication arrest or ionizing radiation-induced DNA damage, integrate DNA repair responses into the cell cycle programme. The ataxia-telangiectasia mutated (ATM) protein kinase blocks cell cycle progression in response to DNA double strand breaks, whereas the related ATR is important in maintaining the integrity of the DNA replication apparatus. Here, we show that thymidine, which slows the progression of replication forks by depleting cellular pools of dCTP, induces a novel DNA damage response that, uniquely, depends on both ATM and ATR. Thymidine induces ATM-mediated phosphorylation of Chk2 and NBS1 and an ATM-independent phosphorylation of Chk1 and SMC1. AT cells exposed to thymidine showed decreased viability and failed to induce homologous recombination repair (HRR). Taken together, our results implicate ATM in the HRR-mediated rescue of replication forks impaired by thymidine treatment.
Resumo:
Homologous recombination repair (HRR) is required for both the repair of DNA double strand breaks (DSBs) and the maintenance of the integrity of DNA replication forks. To determine the effect of a mutant allele of the RAD51 paralog XRCC2 (342delT) found in an HRR-defective tumour cell line, 342delT was introduced into HRR proficient cells containing a recombination reporter substrate. In one set of transfectants, expression of 342delT conferred sensitivity to thymidine and mitomycin C and suppressed HRR induced at the recombination reporter by thymidine but not by DSBs. In a second set of transfectants, the expression of 342delT was accompanied by a decreased level of the full-length XRCC2. These cells were defective in the induction of HRR by either thymidine or DSBs. Thus 342delT suppresses recombination induced by thymidine in a dominant negative manner while recombination induced by DSBs appears to depend upon the level of XRCC2 as well as the expression of the mutant XRCC2 allele. These results suggest that HRR pathways responding to stalled replication forks or DSBs are genetically distinguishable. They further suggest a critical role for XRCC2 in HRR at replication forks, possibly in the loading of RAD51 onto gapped DNA.
Resumo:
Background: Anecdotal evidence from the infrastructure and building sectors highlights issues of alcohol and other drugs (AODs) and its association with safety risk on construction sites. Currently, there is no clear evidence on the prevalence and risk of AOD use among Australian construction workers and there is limited evidential guidance regarding how to effectively address such an issue. Aims: The current research aims to scientifically evaluate the use of AODs within the Australian construction industry in order to reduce the potential resulting safety and performance impacts and engender a cultural change in the workforce. A nationally consistent and collaborative approach across the workforce will be adopted. Methods: A national assessment of the use of AODs was conducted in participating organisations across three states. The World Health Organisation’s Alcohol Use Disorders Identification Test (AUDIT) was used to measure alcohol use. Illicit drug use, ‘readiness to change’, impediments to reducing impairment, feasibility of proposed interventions, and employee attitudes and knowledge regarding AOD was also measured through a combination of survey items and interviews. Through an educative approach and consultation with employers, employees, union groups and leaders in applied AOD research, this assessment was used to inform and support cultural change management of AOD use in the industry. Results: Results (n=494) indicate that as in the general population, a proportion of those sampled in the construction sector may be at risk of hazardous alcohol consumption. A total of 286 respondents (58%) scored above the cut-off cumulative score for risky or hazardous alcohol use. Other drug use was also identified as a major issue. Interview responses and input from all project partners is presented within a guiding principle framework for cultural change. Conclusions: Results support the need for evidence-based, comprehensive and tailored responses in the workplace. This paper will discuss the final results in the context of facilitating cultural change in the construction industry.
Resumo:
This paper provides an overview of the regulatory developments in the UK which impact on the use of in vitro fertilization (IVF) and embryo screening techniques for the creation of “saviour siblings.” Prior to the changes implemented under the Human Fertilisation and Embryology Act 2008, this specific use of IVF was not addressed by the legislative framework and regulated only by way of policy issued by the Human Fertilisation and Embryology Authority (HFEA). Following the implementation of the statutory reforms, a number of restrictive conditions are now imposed on the face of the legislation. This paper considers whether there is any justification for restricting access to IVF and pre-implantation tissue typing for the creation of “saviour siblings.” The analysis is undertaken by examining the normative factors that have guided the development of the UK regulatory approach prior to the 2008 legislative reforms. The approach adopted in relation to the “saviour sibling” issue is compared to more general HFEA policy, which has prioritized the notion of reproductive choice and determined that restrictions on access are only justified on the basis of harm considerations.
Resumo:
Complementary sequences at the 5′ and 3′ ends of the dengue virus RNA genome are essential for viral replication, and are believed to cyclise the genome through long-range base pairing in cis. Although consistent with evidence in the literature, this view neglects possible biologically active multimeric forms that are equally consistent with the data. Here, we propose alternative multimeric structures, and suggest that multigenome noncovalent concatemers are more likely to exist under cellular conditions than single cyclised monomers. Concatemers provide a plausible mechanism for the dengue virus to overcome the single-stranded (+)-sense RNA virus dilemma, and can potentially assist genome transport from the virus-induced vesicles into the cytosol.
Resumo:
Between 50 and 100 million people are infected with dengue viruses each year and more than 100,000 of these die. Dr Choudhury has demonstrated that populations of dengue viruses in individual patients are genetically and functionally very diverse and that this diversity changes significantly at the time of major outbreaks of disease. The results of his studies may inform strategies which will make dengue vaccines far more effective.
Resumo:
Recent experiments [F. E. Pinkerton, M. S. Meyer, G. P. Meisner, M. P. Balogh, and J. J. Vajo, J. Phys. Chem. C 111, 12881 (2007) and J. J. Vajo and G. L. Olson, Scripta Mater. 56, 829 (2007)] demonstrated that the recycling of hydrogen in the coupled LiBH4/MgH2 system is fully reversible. The rehydrogenation of MgB2 is an important step toward the reversibility. By using ab initio density functional theory calculations, we found that the activation barrier for the dissociation of H2 are 0.49 and 0.58 eV for the B and Mg-terminated MgB2(0001) surface, respectively. This implies that the dissociation kinetics of H2 on a MgB2 (0001) surface should be greatly improved compared to that in pure Mg materials. Additionally, the diffusion of dissociated H atom on the Mg-terminated MgB2(0001) surface is almost barrier-less. Our results shed light on the experimentally-observed reversibility and improved kinetics for the coupled LiBH4/MgH2 system.
Resumo:
Ab initio density functional calculations were performed to study the geometry and electronic structure of a prototypical zigzag AlN nanoribbon. We find that H-terminated zigzag 10-AlN nanoribbons have a non-direct band gap and are nonmagnetic. When a transverse electric field is applied, the band gap decreases monotonically with the strength of field E. Zigzag AlN nanoribbons with the N edge unpassivated display strong spin-polarization close to the Fermi level, which will result in spin-anisotropic transport. These results suggest potential applications for the development of AlN nanoribbon-based nanoelectronics applications.
Resumo:
We predict here from first-principle calculations that finite-length (n,0) single walled carbon nanotubes (SWCNTs) with H-termination at the open ends displaying antiferromagnetic coupling when n is greater than 6. An opposite local gating effect of the spin states, i.e., half metallicity, is found under the influence of an external electric field along the direction of tube axis. Remarkably, boron doping of unpassivated SWCNTs at both zigzag edges is found to favor a ferromagnetic ground state, with the B-doped tubes displaying half-metallic behavior even in the absence of an electric field. Aside of the intrinsic interest of these results, an important avenue for development of CNT-based spintronic is suggested.
Resumo:
Structural and electronic properties have been studied for Boron Nitride nanoribbons (BNNR) with both zigzag and armchair shaped edge (Z-BNNR and A-BNNR) by first-principle spin-polarized total energy calculations. We found that the energy band gap of Z-BNNR is indirect and decreases monotonically with the increasing ribbon width, whereas direct energy band gap oscillation was observed for A-BNNRs. Additionally, C-substitution at either single boron or nitrogen atom site in BNNRs could induce spontaneous magnetization. Our results could be potentially useful to design magnetic nano-devices based on BNNRs.
Resumo:
Ab initio density functional theory (DFT) calculations are performed to study the formation and diffusion of hydrogen vacancies on MgH2(110) surface and in bulk. We find that the formation energies for a single H-vacancy increase slightly from the surface to deep layers. The energies for creating adjacent surface divancacies at two inplane sites and at an inplane and a bridge site are even smaller than that for the formation of a single H-vacancy, a fact that is attributed to the strong vacancy−vacancy interactions. The diffusion of an H-vacancy from an in-plane site to a bridge site on the surface has the smallest activation barrier calculated at 0.15 eV and should be fast at room temperature. The activation barriers computed for H-vacancy diffusion from the surface into sublayers are all less than 0.70 eV, which is much smaller than the activation energy for desorption of hydrogen on the MgH2(110) surface (1.78−2.80 eV/H2). This suggests that surface desorption is more likely than vacancy diffusion to be rate determining, such that finding effective catalyst on the MgH2 surface to facilitate desorption will be very important for improving overall dehydrogenation performance.
Resumo:
Ab initio density functional theory (DFT) calculations are performed to study the adsorption of H2 molecules on a Ti-doped Mg(0001) surface. We find that two hydrogen molecules are able to dissociate on top of the Ti atom with very small activation barriers (0.103 and 0.145 eV for the first and second H2 molecules, respectively). Additionally, a molecular adsorption state of H2 above the Ti atom is observed for the first time and is attributed to the polarization of the H2 molecule by the Ti cation. Our results parallel recent findings for H2 adsorption on Ti-doped carbon nanotubes or fullerenes. They provide new insight into the preliminary stages of hydrogen adsorption onto Ti-incorporated Mg surfaces.
Resumo:
The recent Australian Convergence Review’s second principle states: “Australians should have access to and opportunities for participation in a diverse mix of services, voices, views and information”. However, in failing to define its own use and understanding of the terms ‘access’ and ‘participation’ the Convergence Review exposes itself to criticism. These terms would no doubt be made unambiguously clear should the Review’s recommendations move towards policy, and this paper contributes to this discussion by framing access and participation, from the perspective of the ‘produser’ (Bruns, 2008), around three separate but related issues: the failure to frame the discussion that will be undertaken by the Australian Law Reform Commission’s 2012 2013 Copyright Inquiry; the prioritising of the market over and above media accountability and the health of the public sphere; and the missed opportunity to develop a national framework for digital literacy and advanced digital citizenry.