281 resultados para PROSPECCAO MINERAL
Resumo:
The phosphate mineral series eosphorite–childrenite–(Mn,Fe)Al(PO4)(OH)2·(H2O) has been studied using a combination of electron probe analysis and vibrational spectroscopy. Eosphorite is the manganese rich mineral with lower iron content in comparison with the childrenite which has higher iron and lower manganese content. The determined formulae of the two studied minerals are: (Mn0.72,Fe0.13,Ca0.01)(Al)1.04(PO4, OHPO3)1.07(OH1.89,F0.02)·0.94(H2O) for SAA-090 and (Fe0.49,Mn0.35,Mg0.06,Ca0.04)(Al)1.03(PO4, OHPO3)1.05(OH)1.90·0.95(H2O) for SAA-072. Raman spectroscopy enabled the observation of bands at 970 cm−1 and 1011 cm−1 assigned to monohydrogen phosphate, phosphate and dihydrogen phosphate units. Differences are observed in the area of the peaks between the two eosphorite minerals. Raman bands at 562 cm−1, 595 cm−1, and 608 cm−1 are assigned to the �4 bending modes of the PO4, HPO4 and H2PO4 units; Raman bands at 405 cm−1, 427 cm−1 and 466 cm−1 are attributed to the �2 modes of these units. Raman bands of the hydroxyl and water stretching modes are observed. Vibrational spectroscopy enabled details of the molecular structure of the eosphorite mineral series to be determined.
Resumo:
The pegmatite mineral qingheiite Na2(Mn2+,Mg,Fe2+)2(Al,Fe3+)(PO4)3 has been studied by a combination of SEM and EMP, Raman and infrared spectroscopy. The studied sample was collected from the Santa Ana pegmatite, Argentina. The mineral occurs as a primary mineral in lithium bearing pegmatite, in association with beausite and lithiophilite. The Raman spectrum is characterized by a very sharp intense Raman band at 980 cm�1 assigned to the PO3�4 symmetric stretching mode. Multiple Raman bands are observed in the PO3�4 antisymmetric stretching region, providing evidence for the existence of more than one phosphate unit in the structure of qingheiite and evidence for the reduction in symmetry of the phosphate units. This concept is affirmed by the number of bands in the m4 and m2 bending regions. No intensity was observed in the OH stretching region in the Raman spectrum but significant intensity is found in the infrared spectrum. Infrared bands are observed at 2917, 3195, 3414 and 3498 cm�1 are assigned to water stretching vibrations. It is suggested that some water is coordinating the metal cations in the structure of qingheiite.
Resumo:
We have studied the mineral senagalite, a hydrated hydroxy phosphate of aluminium with formula Al2(PO4)(OH)3⋅3H2O using a combination of electron microscopy and vibrational spectroscopy. Senegalite crystal aggregates shows tabular to prismatic habitus and orthorhombic form. The Raman spectrum is dominated by an intense band at 1029 cm−1 assigned to the PO43- ν1 symmetric stretching mode. Intense Raman bands are found at 1071 and 1154 cm−1 with bands of lesser intensity at 1110, 1179 and 1206 cm−1 and are attributed to the PO43- ν3 antisymmetric stretching vibrations. The infrared spectrum shows complexity with a series overlapping bands. A comparison is made with spectra of other aluminium containing phosphate minerals such as augelite and turquoise. Multiple bands are observed for the phosphate bending modes giving support for the reduction of symmetry of the phosphate anion. Vibrational spectroscopy offers a means for the assessment of the structure of senagalite.
Resumo:
The mineral kulanite BaFe2Al2(PO4)3(OH)3, a barium iron aluminum phosphate, has been studied by using a combination of electron microscopy and vibrational spectroscopy. Scanning electron microscopy with EDX shows the mineral is homogenous with no other phases present. The Raman spectrum is dominated by an intense band at 1022 cm−1 assigned to the PO43-ν1 symmetric stretching mode. Low intensity Raman bands at 1076, 1110, 1146, 1182 cm−1 are attributed to the PO43-ν3 antisymmetric stretching vibrations. The infrared spectrum shows a complex spectral profile with overlapping bands. Multiple phosphate bending vibrations supports the concept of a reduction in symmetry of the phosphate anion. Raman spectrum at 3211, 3513 and 3533 cm−1 are assigned to the stretching vibrations of the OH units. Vibrational spectroscopy enables aspects on the molecular structure of kulanite to be assessed.
Resumo:
This research was done on lazulite samples from the Gentil mine, a lithium bearing pegmatite located in the municipality of Mendes Pimentel, Minas Gerais, Brazil. Chemical analysis was carried out by electron microprobe analysis and indicated a magnesium rich phase with partial substitution of iron. Traces of Ca and Mn, (which partially replaced Mg) were found. The calculated chemical formula of the studied sample is: (Mg0.88, Fe0.11)Al1.87(PO4)2.08(OH)2.02. The Raman spectrum of lazulite is dominated by an intense sharp band at 1060 cm-1 assigned to PO stretching vibrations of of tetrahedral [PO4] clusters presents into the HPO2/4- units. Two Raman bands at 1102 and 1137 cm-1 are attributed to both the HOP and PO antisymmetric stretching vibrations. The two infrared bands at 997 and 1007 cm-1 are attributed to the m1 PO3/4- symmetric stretching modes. The intense bands at 1035, 1054, 1081, 1118 and 1154 cm-1 are assigned to the v3PO3/4- antisymmetric stretching modes from both the HOP and tetrahedral [PO4] clusters. A set of Raman bands at 605, 613, 633 and 648 cm-1 are assigned to the m4 out of plane bending modes of the PO4, HPO4 and H2PO4 units. Raman bands observed at 414, 425, 460, and 479 cm-1 are attributed to the m2 tetrahedral PO4 clusters, HPO4 and H2PO4 bending modes. The intense Raman band at 3402 and the infrared band at 3403 cm-1 are assigned to the stretching vibration of the OH units. A combination of Raman and infrared spectroscopy enabled aspects of the molecular structure of the mineral lazulite to be understood.
Resumo:
Bermanite Mn2þMn3þ2 ðPO4Þ2ðOHÞ2 � 4ðH2OÞ is a mixed valent hydrated hydroxy phosphate mineral. The mineral is reddish-brown and occurs in crystal aggregates and as lamellar masses. Bermanite is a common mineral in granitic pegmatites. The chemical composition of bermanite was obtained using EDS techniques. We have studied the molecular structure of bermanite using vibrational spectroscopy. The mineral is characterized by a Raman doublet at 991 and 999 cm-1 attributed to the phosphate stretching mode of two non-equivalent phosphate units. Raman bands at 1071, 1117 and 1142 cm-1 are assigned to the phosphate antisymmetric stretching modes. The hydroxyl stretching spectral region is complex with overlapping bands attributed to water and hydroxyl stretching vibrations. Vibrational spectroscopy proves most useful for the study of the mineral bermanite.
Resumo:
Colemanite CaB3O4(OH)3 H2O is a secondary borate mineral formed from borax and ulexite in evaporate deposits of alkaline lacustrine sediments. The basic structure of colemanite contains endless chains of interlocking BO2(OH) triangles and BO3(OH) tetrahedrons with the calcium, water and extra hydroxide units interspersed between these chains. The Raman spectra of colemanite is characterized by an intense band at 3605 cm-1 assigned to the stretching vibration of OH units and a series of bands at 3182, 3300, 3389 and 3534 cm-1 assigned to water stretching vibrations. Infrared bands are observed in similar positions. The BO stretching vibrations of the trigonal and tetrahedral boron are characterized by Raman bands at 876, 1065 and 1084 cm-1. The OBO bending mode is defined by the Raman band at 611 cm-1. It is important to characterize the very wide range of borate minerals including colemanite because of the very wide range of applications of boron containing minerals.
Resumo:
Raman spectroscopy complimented with infrared spectroscopy has been used to determine the molecular structure of the phosphate mineral fairfieldite. The Raman phosphate (PO4)3- stretching region shows strong differences between the fairfieldite phosphate minerals which is attributed to the cation substitution for calcium in the structure. In the infrared spectra complexity exists with multiple (PO4)2- antisymmetric stretching vibrations observed, indicating a reduction of the tetrahedral symmetry. This loss of degeneracy is also reflected in the bending modes. Strong Raman bands around 600 cm-1 are assigned to v4 phosphate bending modes. Multiple bands in the 400–450 cm-1 region assigned to m2 phosphate bending modes provide further evidence of symmetry reduction of the phosphate anion. Three broadbands for fairfieldite are found at 3040, 3139 and 3271 cm-1 and are assigned to OH stretching bands. By using a Libowitzky empirical equation hydrogen bond distances of 2.658 and 2.730 A are estimated. Vibrational spectroscopy enables aspects of the molecular structure of the fairfieldite to be ascertained.
Resumo:
The objective of this work is to determine the thermal stability and vibrational spectra of datolite CaBSiO4(OH) and relate these properties to the structure of the mineral. The thermal analysis of datolite shows a mass loss of 5.83% over a 700–775 °C temperature range. This mass loss corresponds to 1 water (H2O) molecules pfu. A quantitative chemical analysis using electron probe was undertaken. The Raman spectrum of datolite is characterized by bands at 917 and 1077 cm−1 assigned to the symmetric stretching modes of BO and SiO tetrahedra. A very intense Raman band is observed at 3498 cm−1 assigned to the stretching vibration of the OH units in the structure of datolite. BOH out-of-plane vibrations are characterized by the infrared band at 782 cm−1. The vibrational spectra are based upon the structure of datolite based on sheets of four- and eight-membered rings of alternating SiO4 and BO3(OH) tetrahedra with the sheets bonded together by calcium atoms.
Resumo:
The mineral olshanskyite is one of many calcium borate minerals which has never been studied using vibrational spectroscopy. The mineral is unstable and decomposes upon exposure to an electron beam. This makes the elemental analysis using EDX techniques difficult. Both the Raman and infrared spectra show complexity due to the complexity of the structure. Intense Raman bands are found at 989, 1,003, 1,025 and 1,069 cm-1 with a shoulder at 961 cm-1 and are assigned to trigonal borate units. The Raman bands at 1,141, 1,206 and 1,365 cm-1 are assigned to OH in-plane bending of BOH units. A series of Raman bands are observed in the 2,900–3,621cm-1 spectral range and are assigned to the stretching vibrations of OH and water. This complexity is also reflected in the infrared spectra. Vibrational spectroscopy enables aspects of the structure of olshanskyite to be elucidated.
Resumo:
Vibrational spectroscopy has been used to characterize the sulphate mineral khademite Al(SO4)F∙5(H2O). Raman band at 991 cm-1 with a shoulder at 975 cm-1 is assigned to the ν1 (SO4)2- symmetric stretching mode. The observation of two symmetric stretching modes suggests that the sulphate units are not equivalent. Two low intensity Raman bands at 1104 and 1132 cm-1 are assigned to the ν3 (SO4)2- antisymmetric stretching mode. The broad Raman band at 618 cm-1 is assigned to the v4 (SO4)2- bending modes. Raman bands at 455, 505 and 534 cm-1 are attributable to the doubly degenerate v2 (SO4)2- bending modes. Raman bands at 2991, 3146 and 3380 cm-1 are assigned to the OH stretching bands of water. Five infrared bands are noted at 2458, 2896, 3203, 3348 and 3489 cm-1 are also due to water stretching bands. The observation of multiple water stretching vibrations gives credence to the non-equivalence of water units in the khademite structure. Vibrational spectroscopy enables an assessment of the structure of khademite.
Resumo:
We have studied the mineral goyazite using Raman and infrared spectroscopy. Goyazite is a member of the crandallite subgroup of the alunite supergroup. The crystal structure is of the alunite-type and consists of sheets of corner-sharing AlO6 octahedra parallel to (0001). The octahedrally coordinated Sr2+ cations occupy cavities between pairs of octahedral sheets and are surrounded by six oxygen atoms from the (Al3+)O6 octahedra. The very intense sharp band at 983 cm-1 is assigned to the ν1 PO43- symmetric stretching mode. The observation of a single band supports the concept that all the phosphate units are equivalent in the structure of goyazite. Raman bands observed at 1029 cm-1 and 1037 cm-1 are assigned to the to the ν3 PO43- antisymmetric stretching vibrations. Two Raman bands at 895 and 927 cm-1 are attributed to the stretching vibrations of H2PO4; thus indicating some hydrogen phosphate units in the structure of goyazite. Raman bands at 556, 581, 596 and 612 cm-1 are assigned to the ν4 PO43- bending modes, suggesting a reduction of symmetry of phosphate units. Two sharp Raman bands at 3609 and 3631 cm-1 are attributed to OH stretching vibrations from the goyazite hydroxyl units. Broad Raman bands at 2924, 3043, 3210, 3429 and 3511 cm-1 are assigned to water stretching vibrations. Vibrational spectroscopy enables subtle details of the molecular structure of goyazite to be determined.
Resumo:
Raman spectroscopy complimented with infrared spectroscopy has been used to study the rare earth based mineral huanghoite with possible formula given as BaCe(CO3)2F and compared with the Raman spectra of a series of selected natural halogenated carbonates from different origins including bastnasite, parisite and northupite. The Raman spectrum of huanghoite displays three bands are at 1072, 1084 and 1091 cm−1 attributed to the symmetric stretching vibration. The observation of three symmetric stretching vibrations is very unusual. The position of symmetric stretching vibration varies with mineral composition. Infrared spectroscopy of huanghoite show bands at 1319, 1382, 1422 and 1470 cm−1. No Raman bands of huanghoite were observed in these positions. Raman spectra of bastnasite, parisite and northupite show a single band at 1433, 1420 and 1554 cm−1 assigned to the ν3 (CO3)2− antisymmetric stretching mode. The observation of additional Raman bands for the ν3 modes for some halogenated carbonates is significant in that it shows distortion of the carbonate anion in the mineral structure. Four Raman bands for huanghoite are observed at 687, 704, 718 and 730 cm−1and assigned to the (CO3)2− ν2 bending modes. Raman bands are observed for huanghoite at around 627 cm−1 and are assigned to the (CO3)2− ν4 bending modes. Raman bands are observed for the carbonate ν4 in phase bending modes at 722 cm−1 for bastnasite, 736 and 684 cm−1 for parisite, 714 cm−1 for northupite. Raman bands for huanghoite observed at 3259, 3484 and 3589 cm−1 are attributed to water stretching bands. Multiple bands are observed in the OH stretching region for bastnasite and parisite indicating the presence of water and OH units in their mineral structure. Vibrational spectroscopy enables new information on the structure of huanghoite to be assessed.
Resumo:
There is a large number of boron containing minerals with water and/or hydroxyl units of which pinnoite MgB2O(OH)6 is one. Some discussion about the molecular structure of pinnoite exists in the literature. Whether water is involved in the structure is ill-determined. The molecular structure of pinnoite has been assessed by the combination of Raman and infrared spectroscopy. The Raman spectrum is characterized by an intense band at 900 cm−1 assigned to the BO stretching vibrational mode. A series of bands in the 1000–1320 cm−1 spectral range are attributed to BO antisymmetric stretching modes and in-plane bending modes. The infrared spectrum shows complexity in this spectral range. Multiple Raman OH stretching vibrations are found at 3179, 3399, 3554 and 3579 cm−1. The infrared spectrum shows a series of overlapping bands with bands identified at 3123, 3202, 3299, 3414, 3513 and 3594 cm−1. By using a Libowitzky type function, hydrogen bond distances were calculated. Two types of hydrogen bonds were identified based upon the hydrogen bond distance. It is important to understand the structure of pinnoite in order to form nanomaterials based upon the pinnoite structure.