309 resultados para PREFERENTIAL CO OXIDATION
Resumo:
The study of the electrodeposition of polycrystalline gold in aqueous solution is important from the viewpoint that in electrocatalysis applications ill-defined micro- and nanostructured surfaces are often employed. In this work, the morphology of gold was controlled by the electrodeposition potential and the introduction of Pb(CH3COO)2•3H2O into the plating solution to give either smooth or nanostructured gold crystallites or large dendritic structures which have been characterized by scanning electron microscopy (SEM). The latter structures were achieved through a novel in situ galvanic replacement of lead with AuCl4−(aq) during the course of gold electrodeposition. The electrochemical behavior of electrodeposited gold in the double layer region was studied in acidic and alkaline media and related to electrocatalytic performance for the oxidation of hydrogen peroxide and methanol. It was found that electrodeposited gold is a significantly better electrocatalyst than a polished gold electrode; however, performance is highly dependent on the chosen deposition parameters. The fabrication of a deposit with highly active surface states, comparable to those achieved at severely disrupted metal surfaces through thermal and electrochemical methods, does not result in the most effective electrocatalyst. This is due to significant premonolayer oxidation that occurs in the double layer region of the electrodeposited gold. In particular, in alkaline solution, where gold usually shows the most electrocatalytic activity, these active surface states may be overoxidized and inhibit the electrocatalytic reaction. However, the activity and morphology of an electrodeposited film can be tailored whereby electrodeposited gold that exhibits nanostructure within the crystallites on the surface demonstrated enhanced electrocatalytic activity compared to smaller smooth gold crystallites and larger dendritic structures in potential regions well within the double layer region.
Resumo:
An analytical evaluation of the higher ac harmonic components derived from large amplitude Fourier transformed voltammetry is provided for the reversible oxidation of ferrocenemethanol (FcMeOH) and oxidation of uric acid by an EEC mechanism in a pH 7.4 phosphate buffer at a glassy carbon (GC) electrode. The small background current in the analytically optimal fifth harmonic is predominantly attributed to faradaic current associated with the presence of electroactive functional groups on the GC electrode surface, rather than to capacitive current which dominates the background in the dc, and the initial three ac harmonics. The detection limits for the dc and the first to fifth harmonic ac components are 1.9, 5.89, 2.1, 2.5, 0.8, and 0.5 µM for FcMeOH, respectively, using a sine wave modulation of 100 mV at 21.46 Hz and a dc sweep rate of 111.76 mV s−1. Analytical performance then progressively deteriorates in the sixth and higher harmonics. For the determination of uric acid, the capacitive background current was enhanced and the reproducibility lowered by the presence of surface active uric acid, but the rapid overall 2e− rather than 1e– electron transfer process gives rise to a significantly enhanced fifth harmonic faradaic current which enabled a detection limit of 0.3 µM to be achieved which is similar to that reported using chemically modified electrodes. Resolution of overlapping voltammetric signals for a mixture of uric acid and dopamine is also achieved using higher fourth or fifth harmonic components, under very low background current conditions. The use of higher fourth and fifth harmonics exhibiting highly favorable faradaic to background (noise) current ratios should therefore be considered in analytical applications under circumstances where the electron transfer rate is fast.
Resumo:
In situ atomic force microscopy (AFM) allows images from the upper face and sides of TCNQ crystals to be monitored during the course of the electrochemical solid–solid state conversion of 50 × 50 μm2 three-dimensional drop cast crystals of TCNQ to CuTCNQ or M[TCNQ]2(H2O)2 (M = Co, Ni). Ex situ images obtained by scanning electron microscopy (SEM) also allow the bottom face of the TCNQ crystals, in contact with the indium tin oxide or gold electrode surface and aqueous metal electrolyte solution, to be examined. Results show that by carefully controlling the reaction conditions, nearly mono-dispersed, rod-like phase I CuTCNQ or M[TCNQ]2(H2O)2 can be achieved on all faces. However, CuTCNQ has two different phases, and the transformation of rod-like phase 1 to rhombic-like phase 2 achieved under conditions of cyclic voltammetry was monitored in situ by AFM. The similarity of in situ AFM results with ex situ SEM studies accomplished previously implies that the morphology of the samples remains unchanged when the solvent environment is removed. In the process of crystal transformation, the triple phase solid∣electrode∣electrolyte junction is confirmed to be the initial nucleation site. Raman spectra and AFM images suggest that 100% interconversion is not always achieved, even after extended electrolysis of large 50 × 50 μm2 TCNQ crystals.
Resumo:
The ability of the technique of large-amplitude Fourier transformed (FT) ac voltammetry to facilitate the quantitative evaluation of electrode processes involving electron transfer and catalytically coupled chemical reactions has been evaluated. Predictions derived on the basis of detailed simulations imply that the rate of electron transfer is crucial, as confirmed by studies on the ferrocenemethanol (FcMeOH)-mediated electrocatalytic oxidation of ascorbic acid. Thus, at glassy carbon, gold, and boron-doped diamond electrodes, the introduction of the coupled electrocatalytic reaction, while producing significantly enhanced dc currents, does not affect the ac harmonics. This outcome is as expected if the FcMeOH (0/+) process remains fully reversible in the presence of ascorbic acid. In contrast, the ac harmonic components available from FT-ac voltammetry are predicted to be highly sensitive to the homogeneous kinetics when an electrocatalytic reaction is coupled to a quasi-reversible electron-transfer process. The required quasi-reversible scenario is available at an indium tin oxide electrode. Consequently, reversible potential, heterogeneous charge-transfer rate constant, and charge-transfer coefficient values of 0.19 V vs Ag/AgCl, 0.006 cm s (-1) and 0.55, respectively, along with a second-order homogeneous chemical rate constant of 2500 M (-1) s (-1) for the rate-determining step in the catalytic reaction were determined by comparison of simulated responses and experimental voltammograms derived from the dc and first to fourth ac harmonic components generated at an indium tin oxide electrode. The theoretical concepts derived for large-amplitude FT ac voltammetry are believed to be applicable to a wide range of important solution-based mediated electrocatalytic reactions.
Resumo:
The fabrication of nanostructured bimetallic materials through electrochemical routes offers the ability to control the composition and shape of the final material that can then be effectively applied as (electro)-catalysts. In this work a clean and transitory hydrogen bubble templating method is employed to generate porous Cu–Au materials with a highly anisotropic nanostructured interior. Significantly, the co-electrodeposition of copper and gold promotes the formation of a mixed bimetallic oxide surface which does not occur at the individually electrodeposited materials. Interestingly, the surface is dominated by Au(I) oxide species incorporated within a Cu2O matrix which is extremely effective for the industrially important (electro)-catalytic reduction of 4-nitrophenol. It is proposed that an aurophilic type of interaction takes place between both oxidized gold and copper species which stabilizes the surface against further oxidation and facilitates the binding of 4-nitrophenol to the surface and increases the rate of reaction. An added benefit is that very low gold loadings are required typically less than 2 wt% for a significant enhancement in performance to be observed. Therefore the ability to create a partially oxidized Cu–Au surface through a facile electrochemical route that uses a clean template consisting of only hydrogen bubbles should be of benefit for many more important reactions.
Resumo:
The creation of electrocatalysts based on noble metals has received a significant amount of research interest due to their extensive use as fuel cell catalysts and electrochemical sensors. There have been many attempts to improve the activity of these metals through creating nanostructures, as well as post-synthesis treatments based on chemical, electrochemical, sonochemical and thermal approaches. In many instances these methods result in a material with active surface states, which can be considered to be adatoms or clusters of atoms on the surface that have a low lattice co-ordination number making them more prone to electrochemical oxidation at a wide range of potentials that are significantly less positive than those of their bulk metal counterparts. This phenomenon has been termed pre-monolayer oxidation and has been reported to occur on a range of metallic surfaces. In this work we present findings on the presence of active sites on Pd that has been: evaporated as a thin film; electrodeposited as nanostructures; as well as commercially available Pd nanoparticles supported on carbon. Significantly, advantage is taken of the low oxidation potential of these active sites whereby bimetallic surfaces are created by the spontaneous deposition of Ag from AgNO3 to generate Pd/Ag surfaces. Interestingly this approach does not increase the surface area of the original metal but has significant implications for its further use as an electrode material. It results in the inhibition or promotion of electrocatalytic activity which is highly dependent on the reaction of interest. As a general approach the decoration of active catalytic materials with less active metals for a particular reaction also opens up the possibility of investigating the role of the initially present active sites on the surface and identifying the degree to which they are responsible for electrocatalytic activity.
Resumo:
Childbirth is an extraordinary, everyday experience; in 2011, 301 617 infants were born in Australia [1], resulting in countless potential occurrences of sleep disturbance and subsequent daytime sleepiness. While the relationship between sleep and sleepiness has been heavily investigated in the vulnerable sub-populations of shift workers and patients with sleep disorders, comparatively postpartum women have been overlooked. Previous research has reported slower reaction times to the Psychomotor Vigilance Task [2] and shorter sleep onset in the multiple sleep latency test [3] in new mothers compared with control women. However little is known about change in sleep and sleepiness over time or potential interactions with infant care behaviour choices, such as co-sleeping (mother and infant sharing a bed). This study aims to investigate change in new mothers sleep quantity, sleep quality and resulting daytime sleepiness over postpartum weeks 6, 12 and 18, while evaluating the impact of co-sleeping.
Resumo:
Defining success in mega projects has been a challenging exercise for Australian Defence. The inherent conflict between nation capability building and cost efficiency raises questions about how to appropriately define mega project success. Contrary to the traditional output-focused project methodology, the value creation perspective argues for the importance of creating new knowledge, processes, and systems for suppliers and customers. Stakeholder involvement is important in this new perspective, as the balancing of competing needs of stakeholders in mega projects becomes a major challenge in managing the value co-creation process. In our earlier study reported interview data from three Australian defence mega projects and reported that those senior executives have a more complex understanding of project success than traditional iron triangle measures. In these mega defence projects, customers and other stakeholders actively engage in the value creation process, and over time both content and process value are created to increase defence and national capability. Value created and captured during and post projects are the key to true success. We aim to develop a comprehensive theoretical model the capture the value co-creation process as a way of re-conceptualising success in mega projects. We propose a new framework redefine project value as multi-dimensional, contextual and temporal construct that emerges from the interactions among multiple stake holders over the complete project life cycle. The framework distinguishes between exploitation and exploration types of projects, and takes into consideration the requisite governance structures.
Resumo:
In this paper we will examine passenger actions and activities at the security screening points of Australian domestic and international airports. Our findings and analysis provide a more complete understanding of the current airport passenger security screening experience. Data in this paper is comprised of field studies conducted at two Australian airports, one domestic and one international. Video data was collected by cameras situated either side of the security screening point. A total of one hundred and ninety-six passengers were observed. Two methods of analysis are used. First, the activities of passengers are coded and analysed to reveal the common activities at domestic and international security regimes and between quiet and busy periods. Second, observation of passenger activities is used to reveal uncommon aspects. The results show that passengers do more at security screening that being passively scanned. Passengers queue, unpack the required items from their bags and from their pockets, walk through the metal-detector, re-pack and occasionally return to be re-screened. For each of these activities, passengers must understand the procedures at the security screening point and must co-ordinate various actions and objects in time and space. Through this coordination passengers are active participants in making the security checkpoint function – they are co-producers of the security screening process.
Resumo:
Purpose: Although oral fluoropyrimidine pro-drugs are increasingly being administered in preference to intravenous nucleoside analogues in cancer chemotherapy, their activation in malignant liver tissue may be insufficient. OGT 719 (1-galactopyranosyl-5-fluorouracil) is a novel nucleoside analogue, preferentially localized in hepatocytes and hepatoma cells via the asialoglycoprotein receptor. The aim of this study was to assess the systemic bioavailability of this rationally designed drug in 16 patients with advanced solid cancers. Method: Crossover pharmacokinetic study of oral (400 or 800 mg) and intravenous (250 mg/m 2) OGT 719. Results: Linear pharmacokinetics and oral bioavailability of approximately 25% were observed at the dose levels used in this study. Like other 5-FU prodrugs, considerable interpatient variability was observed in bioavailability following oral dosing. The mean half-life for oral doses was 4 h. OGT 719 was well tolerated. No objective tumour responses were demonstrated. Conclusion: The systemic bioavailability and half-life of oral OGT 719 are sufficient to merit dose escalation studies with frequent daily dosing. Subsequent efficacy studies should be performed in patients with primary and secondary liver malignancies.
Resumo:
Purpose: Although oral fluoropyrimidine pro-drugs are increasingly being administered in preference to intravenous nucleoside analogues in cancer chemotherapy, their activation in malignant liver tissue may be insufficient. OGT 719 (1-galactopyranosyl-5-fluorouracil) is a novel nucleoside analogue, preferentially localized in hepatocytes and hepatoma cells via the asialoglycoprotein receptor. The aim of this study was to assess the systemic bioavailability of this rationally designed drug in 16 patients with advanced solid cancers. Method: Crossover pharmacokinetic study of oral (400 or 800 mg) and intravenous (250 mg/m 2) OGT 719. Results: Linear pharmacokinetics and oral bioavailability of approximately 25% were observed at the dose levels used in this study. Like other 5-FU prodrugs, considerable interpatient variability was observed in bioavailability following oral dosing. The mean half-life for oral doses was 4 h. OGT 719 was well tolerated. No objective tumour responses were demonstrated. Conclusion: The systemic bioavailability and half-life of oral OGT 719 are sufficient to merit dose escalation studies with frequent daily dosing. Subsequent efficacy studies should be performed in patients with primary and secondary liver malignancies.
Resumo:
Participatory digital culture presents major challenges to all traditional media outlets, but it presents very direct challenges to the community broadcast sector, which was established from the outset as local, community-driven and participatory. These and other issues were the focus of a recent forum at the Australian Centre for the Moving Image in Melbourne (Co-Creative Communities, 8–9 November 2012). The forum was part of a national research project, which has been exploring how Australian community arts and media organisations are responding to participatory digital culture, social media and user-led innovation. Focusing on the organisations who presented at the symposium, the paper examines how community-interest media is making the most of new and social media platforms. It considers examples of participatory digital media that have emerged from the community broadcast sector, but it also considers local, collaborative, community-interest media projects developed by public broadcasters and organisations involved in arts, social justice and development. Drawing on forum transcripts and follow-up research the essay describes some of the key trends shaping how community-interest media organisations and independent producers are working with participatory digital culture, and with what success.
Resumo:
We have tested a methodology for the elimination of the selectable marker gene after Agrobacterium-mediated transformation of barley. This involves segregation of the selectable marker gene away from the gene of interest following co-transformation using a plasmid carrying two T-DNAs, which were located adjacent to each other with no intervening region. A standard binary transformation vector was modified by insertion of a small section composed of an additional left and right T-DNA border, so that the selectable marker gene and the site for insertion of the gene of interest (GOI) were each flanked by a left and right border. Using this vector three different GOIs were transformed into barley. Analysis of transgene inheritance was facilitated by a novel and rapid assay utilizing PCR amplification from macerated leaf tissue. Co-insertion was observed in two thirds of transformants, and among these approximately one quarter had transgene inserts which segregated in the next generation to yield selectable marker-free transgenic plants. Insertion of non-T-DNA plasmid sequences was observed in only one of fourteen SMF lines tested. This technique thus provides a workable system for generating transgenic barley free from selectable marker genes, thereby obviating public concerns regarding proliferation of these genes.
Resumo:
Forming peer alliances to share and build knowledge is an important aspect of community arts practice, and these co-creation processes are increasingly being mediated by the internet. This paper offers guidance for practitioners who are interested in better utilising the internet to connect, share, and make new knowledge. It argues that new approaches are required to foster the organising activities that underpin online co-creation, building from the premise that people have become increasingly networked as individuals rather than in groups (Rainie and Wellman 2012: 6), and that these new ways of connecting enable new modes of peer-to-peer production and exchange. This position advocates that practitioners move beyond situating the internet as a platform for dissemination and a tool for co-creating media, to embrace its knowledge collaboration potential. Drawing on a design experiment I developed to promote online knowledge co-creation, this paper suggests three development phases – developing connections, developing ideas, and developing agility – to ground six methods. They are: switching and routing, engaging in small trades of ideas with networked individuals; organising, co-ordinating networked individuals and their data; beta-release, offering ‘beta’ artifacts as knowledge trades; beta-testing, trialing and modifying other peoples ‘beta’ ideas; adapting, responding to technological disruption; and, reconfiguring, embracing opportunities offered by technological disruption. These approaches position knowledge co-creation as another capability of the community artist, along with co-creating art and media.
Resumo:
Abstract OBJECTIVE: Those with mental illness are at increased risk of physical health problems. The current study aimed to examine the information available online to the Australian public about the increased risk and consequences of physical illness in those with mental health problems and the services available to address these co-morbidities. METHODS: A structured online search was conducted with the search engine Google Australia (www.google.com.au) using generic search terms 'mental health information Australia', 'mental illness information Australia', 'depression', 'anxiety', and 'psychosis'. The direct content of websites was examined for information on the physical co-morbidities of mental illness. All external links on high-profile websites [the first five websites retrieved under each search term (n = 25)] were examined for information pertaining to physical health. RESULTS: Only 4.2% of websites informing the public about mental health contained direct content information about the increased risk of physical co-morbidities. The Australian Government's Department of Health and Ageing site did not contain any information. Of the high-profile websites, 62% had external links to resources about physical health and 55% had recommendations or resources for physical health. Most recommendations were generic. CONCLUSIONS: Relative to the seriousness of this problem, there is a paucity of information available to the public about the increased physical health risks associated with mental illness. Improved public awareness is the starting point of addressing this health inequity.