336 resultados para Noninvasive Bp Monitoring
Resumo:
The ability to forecast machinery health is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models which attempt to forecast machinery health based on condition data such as vibration measurements. This paper demonstrates how the population characteristics and condition monitoring data (both complete and suspended) of historical items can be integrated for training an intelligent agent to predict asset health multiple steps ahead. The model consists of a feed-forward neural network whose training targets are asset survival probabilities estimated using a variation of the Kaplan–Meier estimator and a degradation-based failure probability density function estimator. The trained network is capable of estimating the future survival probabilities when a series of asset condition readings are inputted. The output survival probabilities collectively form an estimated survival curve. Pump data from a pulp and paper mill were used for model validation and comparison. The results indicate that the proposed model can predict more accurately as well as further ahead than similar models which neglect population characteristics and suspended data. This work presents a compelling concept for longer-range fault prognosis utilising available information more fully and accurately.
Resumo:
Knowledge of cable parameters has been well established but a better knowledge of the environment in which the cables are buried lags behind. Research in Queensland University of Technology has been aimed at obtaining and analysing actual daily field values of thermal resistivity and diffusivity of the soil around power cables. On-line monitoring systems have been developed and installed with a data logger system and buried spheres that use an improved technique to measure thermal resistivity and diffusivity over a short period. Results based on long term continuous field data are given. A probabilistic approach is developed to establish the correlation between the measured field thermal resistivity values and rainfall data from weather bureau records. This data from field studies can reduce the risk in cable rating decisions and provide a basis for reliable prediction of “hot spot” of an existing cable circuit
Resumo:
In this paper we demonstrate how to monitor a smartphone running Symbian operating system and Windows Mobile in order to extract features for anomaly detection. These features are sent to a remote server because running a complex intrusion detection system on this kind of mobile device still is not feasible due to capability and hardware limitations. We give examples on how to compute relevant features and introduce the top ten applications used by mobile phone users based on a study in 2005. The usage of these applications is recorded by a monitoring client and visualized. Additionally, monitoring results of public and self-written malwares are shown. For improving monitoring client performance, Principal Component Analysis was applied which lead to a decrease of about 80 of the amount of monitored features.
Resumo:
This article proposes an approach for real-time monitoring of risks in executable business process models. The approach considers risks in all phases of the business process management lifecycle, from process design, where risks are defined on top of process models, through to process diagnosis, where risks are detected during process execution. The approach has been realized via a distributed, sensor-based architecture. At design-time, sensors are defined to specify risk conditions which when fulfilled, are a likely indicator of negative process states (faults) to eventuate. Both historical and current process execution data can be used to compose such conditions. At run-time, each sensor independently notifies a sensor manager when a risk is detected. In turn, the sensor manager interacts with the monitoring component of a business process management system to prompt the results to process administrators who may take remedial actions. The proposed architecture has been implemented on top of the YAWL system, and evaluated through performance measurements and usability tests with students. The results show that risk conditions can be computed efficiently and that the approach is perceived as useful by the participants in the tests.
Resumo:
Compared to conventional metal-foil strain gauges, nanocomposite piezoresistive strain sensors have demonstrated high strain sensitivity and have been attracting increasing attention in recent years. To fulfil their ultimate success, the performance of vapor growth carbon fiber (VGCF)/epoxy nanocomposite strain sensors subjected to static cyclic loads was evaluated in this work. A strain-equivalent quantity (resistance change ratio) in cantilever beams with intentionally induced notches in bending was evaluated using the conventional metal-foil strain gauges and the VGCF/epoxy nanocomposite sensors. Compared to the metal-foil strain gauges, the nanocomposite sensors are much more sensitive to even slight structural damage. Therefore, it was confirmed that the signal stability, reproducibility, and durability of these nanocomposite sensors are very promising, leading to the present endeavor to apply them for static structural health monitoring.
Resumo:
Our daily lives become more and more dependent upon smartphones due to their increased capabilities. Smartphones are used in various ways, e.g. for payment systems or assisting the lives of elderly or disabled people. Security threats for these devices become more and more dangerous since there is still a lack of proper security tools for protection. Android emerges as an open smartphone platform which allows modification even on operating system level and where third-party developers first time have the opportunity to develop kernel-based low-level security tools. Android quickly gained its popularity among smartphone developers and even beyond since it bases on Java on top of "open" Linux in comparison to former proprietary platforms which have very restrictive SDKs and corresponding APIs. Symbian OS, holding the greatest market share among all smartphone OSs, was even closing critical APIs to common developers and introduced application certification. This was done since this OS was the main target for smartphone malwares in the past. In fact, more than 290 malwares designed for Symbian OS appeared from July 2004 to July 2008. Android, in turn, promises to be completely open source. Together with the Linux-based smartphone OS OpenMoko, open smartphone platforms may attract malware writers for creating malicious applications endangering the critical smartphone applications and owners privacy. Since signature-based approaches mainly detect known malwares, anomaly-based approaches can be a valuable addition to these systems. They base on mathematical algorithms processing data that describe the state of a certain device. For gaining this data, a monitoring client is needed that has to extract usable information (features) from the monitored system. Our approach follows a dual system for analyzing these features. On the one hand, functionality for on-device light-weight detection is provided. But since most algorithms are resource exhaustive, remote feature analysis is provided on the other hand. Having this dual system enables event-based detection that can react to the current detection need. In our ongoing research we aim to investigates the feasibility of light-weight on-device detection for certain occasions. On other occasions, whenever significant changes are detected on the device, the system can trigger remote detection with heavy-weight algorithms for better detection results. In the absence of the server respectively as a supplementary approach, we also consider a collaborative scenario. Here, mobile devices sharing a common objective are enabled by a collaboration module to share information, such as intrusion detection data and results. This is based on an ad-hoc network mode that can be provided by a WiFi or Bluetooth adapter nearly every smartphone possesses.
Resumo:
utomatic pain monitoring has the potential to greatly improve patient diagnosis and outcomes by providing a continuous objective measure. One of the most promising methods is to do this via automatically detecting facial expressions. However, current approaches have failed due to their inability to: 1) integrate the rigid and non-rigid head motion into a single feature representation, and 2) incorporate the salient temporal patterns into the classification stage. In this paper, we tackle the first problem by developing a “histogram of facial action units” representation using Active Appearance Model (AAM) face features, and then utilize a Hidden Conditional Random Field (HCRF) to overcome the second issue. We show that both of these methods improve the performance on the task of pain detection in sequence level compared to current state-of-the-art-methods on the UNBC-McMaster Shoulder Pain Archive.
Resumo:
Restoring a large-scale power system has always been a complicated and important issue. A lot of research work has been done on different aspects of the whole power system restoration procedure. However, more time will be required to complete the power system restoration process in an actual situation if accurate and real-time system data cannot be obtained. With the development of the wide area monitoring system (WAMS), power system operators are capable of accessing to more accurate data in the restoration stage after a major outage. The ultimate goal of the system restoration is to restore as much load as possible while in the shortest period of time after a blackout, and the restorable load can be estimated by employing WAMS. Moreover, discrete restorable loads are employed considering the limited number of circuit-breaker operations and the practical topology of distribution systems. In this work, a restorable load estimation method is proposed employing WAMS data after the network frame has been reenergized, and WAMS is also employed to monitor the system parameters in case the newly recovered system becomes unstable again. The proposed method has been validated with the New England 39-Bus system and an actual power system in Guangzhou, China.
Resumo:
Aims: This paper describes the development of a risk adjustment (RA) model predictive of individual lesion treatment failure in percutaneous coronary interventions (PCI) for use in a quality monitoring and improvement program. Methods and results: Prospectively collected data for 3972 consecutive revascularisation procedures (5601 lesions) performed between January 2003 and September 2011 were studied. Data on procedures to September 2009 (n = 3100) were used to identify factors predictive of lesion treatment failure. Factors identified included lesion risk class (p < 0.001), occlusion type (p < 0.001), patient age (p = 0.001), vessel system (p < 0.04), vessel diameter (p < 0.001), unstable angina (p = 0.003) and presence of major cardiac risk factors (p = 0.01). A Bayesian RA model was built using these factors with predictive performance of the model tested on the remaining procedures (area under the receiver operating curve: 0.765, Hosmer–Lemeshow p value: 0.11). Cumulative sum, exponentially weighted moving average and funnel plots were constructed using the RA model and subjectively evaluated. Conclusion: A RA model was developed and applied to SPC monitoring for lesion failure in a PCI database. If linked to appropriate quality improvement governance response protocols, SPC using this RA tool might improve quality control and risk management by identifying variation in performance based on a comparison of observed and expected outcomes.
Resumo:
Vacuum circuit breaker (VCB) overvoltage failure and its catastrophic failures during shunt reactor switching have been analyzed through computer simulations for multiple reignitions with a statistical VCB model found in the literature. However, a systematic review (SR) that is related to the multiple reignitions with a statistical VCB model does not yet exist. Therefore, this paper aims to analyze and explore the multiple reignitions with a statistical VCB model. It examines the salient points, research gaps and limitations of the multiple reignition phenomenon to assist with future investigations following the SR search. Based on the SR results, seven issues and two approaches to enhance the current statistical VCB model are identified. These results will be useful as an input to improve the computer modeling accuracy as well as the development of a reignition switch model with point-on-wave controlled switching for condition monitoring
Resumo:
1. Autonomous acoustic recorders are widely available and can provide a highly efficient method of species monitoring, especially when coupled with software to automate data processing. However, the adoption of these techniques is restricted by a lack of direct comparisons with existing manual field surveys. 2. We assessed the performance of autonomous methods by comparing manual and automated examination of acoustic recordings with a field-listening survey, using commercially available autonomous recorders and custom call detection and classification software. We compared the detection capability, time requirements, areal coverage and weather condition bias of these three methods using an established call monitoring programme for a nocturnal bird, the little spotted kiwi(Apteryx owenii). 3. The autonomous recorder methods had very high precision (>98%) and required <3% of the time needed for the field survey. They were less sensitive, with visual spectrogram inspection recovering 80% of the total calls detected and automated call detection 40%, although this recall increased with signal strength. The areal coverage of the spectrogram inspection and automatic detection methods were 85% and 42% of the field survey. The methods using autonomous recorders were more adversely affected by wind and did not show a positive association between ground moisture and call rates that was apparent from the field counts. However, all methods produced the same results for the most important conservation information from the survey: the annual change in calling activity. 4. Autonomous monitoring techniques incur different biases to manual surveys and so can yield different ecological conclusions if sampling is not adjusted accordingly. Nevertheless, the sensitivity, robustness and high accuracy of automated acoustic methods demonstrate that they offer a suitable and extremely efficient alternative to field observer point counts for species monitoring.
Resumo:
This article describes the architecture of a monitoring component for the YAWL system. The architecture proposed is based on sensors and it is realized as a YAWL service to have perfect integration with the YAWL systems. The architecture proposed is generic and applicable in different contexts of business process monitoring. Finally, it was tested and evaluated in the context of risk monitoring for business processes.