280 resultados para Moore, Julia.
Resumo:
CAAS is a rule-based expert system, which provides advice on the Victorial Credit Act 1984. It is currently in commercial use, and has been developed in conjunction with a law firm. It uses an object-oriented hybrid reasoning approach. The system was initially prototyped using the expert system shell NExpert Object, and was then converted into the C++ language. In this paper we describe the advantages that this methodology has, for both commercial and research development.
Resumo:
Spontaneous play, important for forming the basis of friendships and peer relations, is a complex activity involving the management and production of talk-in-interaction. This paper focuses on the intricacies of social interaction, emphasising the link between alignment and affiliation, and the range and importance of verbal and nonverbal interactive devices available to children. Analysis of the way in which two girls, one of whom has been diagnosed with Asperger’s Syndrome, engage in spontaneous activities demonstrates the potential for interactional difficulty due to the unscripted nature of the interaction. The paper argues for further research into how improvised, unscripted interactions are initiated within moment-by-moment talk, how they unfold, and how they are brought to a close in everyday contexts in order to understand how children create their social worlds.
Resumo:
Driving is often nominated as problematic by individuals with chronic whiplash associated disorders (WAD), yet driving-related performance has not been evaluated objectively. The purpose of this study was to test driving-related performance in persons with chronic WAD against healthy controls of similar age, gender and driving experience to determine if driving-related performance in the WAD group was sufficiently impaired to recommend fitness to drive assessment. Driving-related performance was assessed using an advanced driving simulator during three driving scenarios; freeway, residential and a central business district (CBD). Total driving duration was approximately 15 min. Five driving tasks which could cause a collision (critical events) were included in the scenarios. In addition, the effect of divided attention (identify red dots projected onto side or rear view mirrors) was assessed three times in each scenario. Driving performance was measured using the simulator performance index (SPI) which is calculated from 12 measures. z-Scores for all SPI measures were calculated for each WAD subject based on mean values of the control subjects. The z-scores were then averaged for the WAD group. A z-score of ≤−2 indicated a driving failing grade in the simulator. The number of collisions over the five critical events was compared between the WAD and control groups as was reaction time and missed response ratio in identifying the red dots. Seventeen WAD and 26 control subjects commenced the driving assessment. Demographic data were comparable between the groups. All subjects completed the freeway scenario but four withdrew during the residential and eight during the CBD scenario because of motion sickness. All scenarios were completed by 14 WAD and 17 control subjects. Mean z-scores for the SPI over the three scenarios was statistically lower in the WAD group (−0.3 ± 0.3; P < 0.05) but the score was not below the cut-off point for safe driving. There were no differences in the reaction time and missed response ratio in divided attention tasks between the groups (All P > 0.05). Assessment of driving in an advanced driving simulator for approximately 15 min revealed that driving-related performance in chronic WAD was not sufficiently impaired to recommend the need for fitness to drive assessment.
Resumo:
The absence of comparative validity studies has prevented researchers from reaching consensus regarding the application of intensity-related accelerometer cut points for children and adolescents. PURPOSE This study aimed to evaluate the classification accuracy of five sets of independently developed ActiGraph cut points using energy expenditure, measured by indirect calorimetry, as a criterion reference standard. METHODS A total of 206 participants between the ages of 5 and 15 yr completed 12 standardized activity trials. Trials consisted of sedentary activities (lying down, writing, computer game), lifestyle activities (sweeping, laundry, throw and catch, aerobics, basketball), and ambulatory activities (comfortable walk, brisk walk, brisk treadmill walk, running). During each trial, participants wore an ActiGraph GT1M, and VO 2 was measured breath-by-breath using the Oxycon Mobile portable metabolic system. Physical activity intensity was estimated using five independently developed cut points: Freedson/Trost (FT), Puyau (PU), Treuth (TR), Mattocks (MT), and Evenson (EV). Classification accuracy was evaluated via weighted κ statistics and area under the receiver operating characteristic curve (ROC-AUC). RESULTS Across all four intensity levels, the EV (κ = 0.68) and FT (κ = 0.66) cut points exhibited significantly better agreement than TR (κ = 0.62), MT (κ = 0.54), and PU (κ = 0.36). The EV and FT cut points exhibited significantly better classification accuracy for moderate-to vigorous-intensity physical activity (ROC-AUC = 0.90) than TR, PU, or MT cut points (ROC-AUC = 0.77-0.85). Only the EV cut points provided acceptable classification accuracy for all four levels of physical activity intensity and performed well among children of all ages. The widely applied sedentary cut point of 100 counts per minute exhibited excellent classification accuracy (ROC-AUC = 0.90). CONCLUSIONS On the basis of these findings, we recommend that researchers use the EV ActiGraph cut points to estimate time spent in sedentary, light-, moderate-, and vigorous-intensity activity in children and adolescents. Copyright © 2011 by the American College of Sports Medicine.
Resumo:
Over the last three decades, a growing body of research related to epistemic beliefs has been identified as a crucial for understanding teaching and learning (Yadav, Herron, & Samarapungavan, 2011). In particular, research related to beliefs about teaching, learning and knowledge has been considered important for understanding why teachers engage in certain approaches to pedagogy, curriculum and assessment in classrooms (Stromlo & Bråten, 2011). The beliefs held by teachers about knowledge and knowing, otherwise known as personal epistemology (Hofer, 2010), have been shown to influence other knowledge and beliefs (Schommer-Aikens, 2004). Five and Buehl (2012) indicated that because an individual’s understanding of reality is always seen through the lens of existing beliefs, the role of beliefs as a filter is particularly relevant in the context of teacher education. That is, if beliefs influence how individuals interpret new information and experiences, preservice and practicing teachers’ beliefs shape what and how they learn about teaching.” (p. 470-480). It is likely that such beliefs have an important relationship with teacher knowledge and practices...
Resumo:
Homologous recombination mediated by RAD51 recombinase helps eliminate chromosomal lesions, such as DNA double-strand breaks induced by radiation or arising from injured DNA replication forks. The tumor suppressors BRCA2 and PALB2 act together to deliver RAD51 to chromosomal lesions to initiate repair. Here we document a new function of PALB2: to enhance RAD51's ability to form the D loop. We show that PALB2 binds DNA and physically interacts with RAD51. Notably, although PALB2 alone stimulates D-loop formation, it has a cooperative effect with RAD51AP1, an enhancer of RAD51. This stimulation stems from the ability of PALB2 to function with RAD51 and RAD51AP1 to assemble the synaptic complex. Our results demonstrate the multifaceted role of PALB2 in chromosome damage repair. Because PALB2 mutations can cause cancer or Fanconi anemia, our findings shed light on the mechanism of tumor suppression in humans.
Resumo:
The practice of medicine has always aimed at individualized treatment of disease. The relationship between patient and physician has always been a personal one, and the physician's choice of treatment has been intended to be the best fit for the patient's needs. The necessary pooling/grouping of disease families and their assignment to a number of drugs or treatment methods has, consequently, led to an increase in the number of effective therapies. However, given the heterogeneity of most human diseases, and cancer specifically, it is currently impossible for the treating clinician to effectively predict a patient's response and outcome based on current technologies, much less the idiosyncratic resistances and adverse effects associated with the limited therapeutic options.
Resumo:
In contrast to extensive studies on familial breast cancer, it is currently unclear whether defects in DNA double strand break (DSB) repair genes play a role in sporadic breast cancer development and progression. We performed analysis of immunohistochemistry in an independent cohort of 235 were sporadic breast tumours. This analysis suggested that RAD51 expression is increased during breast cancer progression and metastasis and an oncogenic role for RAD51 when deregulated. Subsequent knockdown of RAD51 repressed cancer cell migration in vitro and reduced primary tumor growth in a syngeneic mouse model in vivo. Loss of RAD51 also inhibited associated metastasis not only in syngeneic mice but human xenografts and changed the metastatic gene expression profile of cancer cells, consistent with inhibition of distant metastasis. This demonstrates for the first time a new function of RAD51 that may underlie the proclivity of patients with RAD51 overexpression to develop distant metastasis. RAD51 is a potential biomarker and attractive drug target for metastatic triple negative breast cancer, with the capability to extend the survival of patients, which is less than 6 months.
Resumo:
While genomics provide important information about the somatic genetic changes, and RNA transcript profiling can reveal important expression changes that correlate with outcome and response to therapy, it is the proteins that do the work in the cell. At a functional level, derangements within the proteome, driven by post-translational and epigenetic modifications, such as phosphorylation, is the cause of a vast majority of human diseases. Cancer, for instance, is a manifestation of deranged cellular protein molecular networks and cell signaling pathways that are based on genetic changes at the DNA level. Importantly, the protein pathways contain the drug targets in signaling networks that govern overall cellular survival, proliferation, invasion and cell death. Consequently, the promise of proteomics resides in the ability to extend analysis beyond correlation to causality. A critical gap in the information knowledge base of molecular profiling is an understanding of the ongoing activity of protein signaling in human tissue: what is activated and “in use” within the human body at any given point in time. To address this gap, we have invented a new technology, called reverse phase protein microarrays, that can generate a functional read-out of cell signaling networks or pathways for an individual patient obtained directly from a biopsy specimen. This “wiring diagram” can serve as the basis for both, selection of a therapy and patient stratification.
Resumo:
Cancer can be defined as a deregulation or hyperactivity in the ongoing network of intracellular and extracellular signaling events. Reverse phase protein microarray technology may offer a new opportunity to measure and profile these signaling pathways, providing data on post-translational phosphorylation events not obtainable by gene microarray analysis. Treatment of ovarian epithelial carcinoma almost always takes place in a metastatic setting since unfortunately the disease is often not detected until later stages. Thus, in addition to elucidation of the molecular network within a tumor specimen, critical questions are to what extent do signaling changes occur upon metastasis and are there common pathway elements that arise in the metastatic microenvironment. For individualized combinatorial therapy, ideal therapeutic selection based on proteomic mapping of phosphorylation end points may require evaluation of the patient's metastatic tissue. Extending these findings to the bedside will require the development of optimized protocols and reference standards. We have developed a reference standard based on a mixture of phosphorylated peptides to begin to address this challenge.
Resumo:
The ongoing challenge for ED leaders is to remain abreast of system-wide changes that impact on the day-to-day management of their departments. Changes to the funding model creates another layer of complexity and this introductory paper serves as the beginning of a discussion about the way in which EDs are funded and how this can and will impact on business decisions, models of care and resource allocation within Australian EDs. Furthermore it is evident that any funding model today will mature and change with time, and moves are afoot to refine and contextualise ED funding over the medium term. This perspective seeks to provide a basis of understanding for our current and future funding arrangements in Australian EDs.
Resumo:
Brain decoding of functional Magnetic Resonance Imaging data is a pattern analysis task that links brain activity patterns to the experimental conditions. Classifiers predict the neural states from the spatial and temporal pattern of brain activity extracted from multiple voxels in the functional images in a certain period of time. The prediction results offer insight into the nature of neural representations and cognitive mechanisms and the classification accuracy determines our confidence in understanding the relationship between brain activity and stimuli. In this paper, we compared the efficacy of three machine learning algorithms: neural network, support vector machines, and conditional random field to decode the visual stimuli or neural cognitive states from functional Magnetic Resonance data. Leave-one-out cross validation was performed to quantify the generalization accuracy of each algorithm on unseen data. The results indicated support vector machine and conditional random field have comparable performance and the potential of the latter is worthy of further investigation.
Resumo:
It is well established that the time to name target objects can be influenced by the presence of categorically related versus unrelated distractor items. A variety of paradigms have been developed to determine the level at which this semantic interference effect occurs in the speech production system. In this study, we investigated one of these tasks, the postcue naming paradigm, for the first time with fMRI. Previous behavioural studies using this paradigm have produced conflicting interpretations of the processing level at which the semantic interference effect takes place, ranging from pre- to post-lexical. Here we used fMRI with a sparse, event-related design to adjudicate between these competing explanations. We replicated the behavioural postcue naming effect for categorically related target/distractor pairs, and observed a corresponding increase in neuronal activation in the right lingual and fusiform gyri-regions previously associated with visual object processing and colour-form integration. We interpret these findings as being consistent with an account that places the semantic interference effect in the postcue paradigm at a processing level involving integration of object attributes in short-term memory.
Resumo:
In this paper we provide normative data along multiple cognitive and affective variable dimensions for a set of 110 sounds, including living and manmade stimuli. Environmental sounds are being increasingly utilized as stimuli in the cognitive, neuropsychological and neuroimaging fields, yet there is no comprehensive set of normative information for these type of stimuli available for use across these experimental domains. Experiment 1 collected data from 162 participants in an on-line questionnaire, which included measures of identification and categorization as well as cognitive and affective variables. A subsequent experiment collected response times to these sounds. Sounds were normalized to the same length (1 second) in order to maximize usage across multiple paradigms and experimental fields. These sounds can be freely downloaded for use, and all response data have also been made available in order that researchers can choose one or many of the cognitive and affective dimensions along which they would like to control their stimuli. Our hope is that the availability of such information will assist researchers in the fields of cognitive and clinical psychology and the neuroimaging community in choosing well-controlled environmental sound stimuli, and allow comparison across multiple studies.
Resumo:
Previous behavioral studies reported a robust effect of increased naming latencies when objects to be named were blocked within semantic category, compared to items blocked between category. This semantic context effect has been attributed to various mechanisms including inhibition or excitation of lexico-semantic representations and incremental learning of associations between semantic features and names, and is hypothesized to increase demands on verbal self-monitoring during speech production. Objects within categories also share many visual structural features, introducing a potential confound when interpreting the level at which the context effect might occur. Consistent with previous findings, we report a significant increase in response latencies when naming categorically related objects within blocks, an effect associated with increased perfusion fMRI signal bilaterally in the hippocampus and in the left middle to posterior superior temporal cortex. No perfusion changes were observed in the middle section of the left middle temporal cortex, a region associated with retrieval of lexical-semantic information in previous object naming studies. Although a manipulation of visual feature similarity did not influence naming latencies, we observed perfusion increases in the perirhinal cortex for naming objects with similar visual features that interacted with the semantic context in which objects were named. These results provide support for the view that the semantic context effect in object naming occurs due to an incremental learning mechanism, and involves increased demands on verbal self-monitoring.