453 resultados para Minimal Hausdor Frames
Resumo:
We consider complexity penalization methods for model selection. These methods aim to choose a model to optimally trade off estimation and approximation errors by minimizing the sum of an empirical risk term and a complexity penalty. It is well known that if we use a bound on the maximal deviation between empirical and true risks as a complexity penalty, then the risk of our choice is no more than the approximation error plus twice the complexity penalty. There are many cases, however, where complexity penalties like this give loose upper bounds on the estimation error. In particular, if we choose a function from a suitably simple convex function class with a strictly convex loss function, then the estimation error (the difference between the risk of the empirical risk minimizer and the minimal risk in the class) approaches zero at a faster rate than the maximal deviation between empirical and true risks. In this paper, we address the question of whether it is possible to design a complexity penalized model selection method for these situations. We show that, provided the sequence of models is ordered by inclusion, in these cases we can use tight upper bounds on estimation error as a complexity penalty. Surprisingly, this is the case even in situations when the difference between the empirical risk and true risk (and indeed the error of any estimate of the approximation error) decreases much more slowly than the complexity penalty. We give an oracle inequality showing that the resulting model selection method chooses a function with risk no more than the approximation error plus a constant times the complexity penalty.
Resumo:
We consider the problem of how to construct robust designs for Poisson regression models. An analytical expression is derived for robust designs for first-order Poisson regression models where uncertainty exists in the prior parameter estimates. Given certain constraints in the methodology, it may be necessary to extend the robust designs for implementation in practical experiments. With these extensions, our methodology constructs designs which perform similarly, in terms of estimation, to current techniques, and offers the solution in a more timely manner. We further apply this analytic result to cases where uncertainty exists in the linear predictor. The application of this methodology to practical design problems such as screening experiments is explored. Given the minimal prior knowledge that is usually available when conducting such experiments, it is recommended to derive designs robust across a variety of systems. However, incorporating such uncertainty into the design process can be a computationally intense exercise. Hence, our analytic approach is explored as an alternative.
Resumo:
Many drivers in highly motorised countries believe that aggressive driving is increasing. While the prevalence of the behaviour is difficult to reliably identify, the consequences of on-road aggression can be severe, with extreme cases resulting in property damage, injury and even death. This research program was undertaken to explore the nature of aggressive driving from within the framework of relevant psychological theory in order to enhance our understanding of the behaviour and to inform the development of relevant interventions. To guide the research a provisional ‘working’ definition of aggressive driving was proposed encapsulating the recurrent characteristics of the behaviour cited in the literature. The definition was: “aggressive driving is any on-road behaviour adopted by a driver that is intended to cause physical or psychological harm to another road user and is associated with feelings of frustration, anger or threat”. Two main theoretical perspectives informed the program of research. The first was Shinar’s (1998) frustration-aggression model, which identifies both the person-related and situational characteristics that contribute to aggressive driving, as well as proposing that aggressive behaviours can serve either an ‘instrumental’ or ‘hostile’ function. The second main perspective was Anderson and Bushman’s (2002) General Aggression Model. In contrast to Shinar’s model, the General Aggression Model reflects a broader perspective on human aggression that facilitates a more comprehensive examination of the emotional and cognitive aspects of aggressive behaviour. Study One (n = 48) examined aggressive driving behaviour from the perspective of young drivers as an at-risk group and involved conducting six focus groups, with eight participants in each. Qualitative analyses identified multiple situational and person-related factors that contribute to on-road aggression. Consistent with human aggression theory, examination of self-reported experiences of aggressive driving identified key psychological elements and processes that are experienced during on-road aggression. Participants cited several emotions experienced during an on-road incident: annoyance, frustration, anger, threat and excitement. Findings also suggest that off-road generated stress may transfer to the on-road environment, at times having severe consequences including crash involvement. Young drivers also appeared quick to experience negative attributions about the other driver, some having additional thoughts of taking action. Additionally, the results showed little difference between males and females in the severity of behavioural responses they were prepared to adopt, although females appeared more likely to displace their negative emotions. Following the self-reported on-road incident, evidence was also found of a post-event influence, with females being more likely to experience ongoing emotional effects after the event. This finding was evidenced by ruminating thoughts or distraction from tasks. However, the impact of such a post-event influence on later behaviours or interpersonal interactions appears to be minimal. Study Two involved the quantitative analysis of n = 926 surveys completed by a wide age range of drivers from across Queensland. The study aimed to explore the relationships between the theoretical components of aggressive driving that were identified in the literature review, and refined based on the findings of Study One. Regression analyses were used to examine participant emotional, cognitive and behavioural responses to two differing on-road scenarios whilst exploring the proposed theoretical framework. A number of socio-demographic, state and trait person-related variables such as age, pre-study emotions, trait aggression and problem-solving style were found to predict the likelihood of a negative emotional response such as frustration, anger, perceived threat, negative attributions and the likelihood of adopting either an instrumental or hostile behaviour in response to Scenarios One and Two. Complex relationships were found to exist between the variables, however, they were interpretable based on the literature review findings. Factor analysis revealed evidence supporting Shinar’s (1998) dichotomous description of on-road aggressive behaviours as being instrumental or hostile. The second stage of Study Two used logistic regression to examine the factors that predicted the potentially hostile aggressive drivers (n = 88) within the sample. These drivers were those who indicated a preparedness to engage in direct acts of interpersonal aggression on the road. Young, male drivers 17–24 years of age were more likely to be classified as potentially hostile aggressive drivers. Young drivers (17–24 years) also scored significantly higher than other drivers on all subscales of the Aggression Questionnaire (Buss & Perry, 1992) and on the ‘negative problem orientation’ and ‘impulsive careless style’ subscales of the Social Problem Solving Inventory – Revised (D’Zurilla, Nezu & Maydeu-Olivares, 2002). The potentially hostile aggressive drivers were also significantly more likely to engage in speeding and drink/drug driving behaviour. With regard to the emotional, cognitive and behavioural variables examined, the potentially hostile aggressive driver group also scored significantly higher than the ‘other driver’ group on most variables examined in the proposed theoretical framework. The variables contained in the framework of aggressive driving reliably distinguished potentially hostile aggressive drivers from other drivers (Nagalkerke R2 = .39). Study Three used a case study approach to conduct an in-depth examination of the psychosocial characteristics of n = 10 (9 males and 1 female) self-confessed hostile aggressive drivers. The self-confessed hostile aggressive drivers were aged 24–55 years of age. A large proportion of these drivers reported a Year 10 education or better and average–above average incomes. As a group, the drivers reported committing a number of speeding and unlicensed driving offences in the past three years and extensive histories of violations outside of this period. Considerable evidence was also found of exposure to a range of developmental risk factors for aggression that may have contributed to the driver’s on-road expression of aggression. These drivers scored significantly higher on the Aggression Questionnaire subscales and Social Problem Solving Inventory Revised subscales, ‘negative problem orientation’ and ‘impulsive/careless style’, than the general sample of drivers included in Study Two. The hostile aggressive driver also scored significantly higher on the Barrett Impulsivity Scale – 11 (Patton, Stanford & Barratt, 1995) measure of impulsivity than a male ‘inmate’, or female ‘general psychiatric’ comparison group. Using the Carlson Psychological Survey (Carlson, 1982), the self-confessed hostile aggressive drivers scored equal or higher scores than the comparison group of incarcerated individuals on the subscale measures of chemical abuse, thought disturbance, anti-social tendencies and self-depreciation. Using the Carlson Psychological Survey personality profiles, seven participants were profiled ‘markedly anti-social’, two were profiled ‘negative-explosive’ and one was profiled as ‘self-centred’. Qualitative analysis of the ten case study self-reports of on-road hostile aggression revealed a similar range of on-road situational factors to those identified in the literature review and Study One. Six of the case studies reported off-road generated stress that they believed contributed to the episodes of aggressive driving they recalled. Intense ‘anger’ or ‘rage’ were most frequently used to describe the emotions experienced in response to the perceived provocation. Less frequently ‘excitement’ and ‘fear’ were cited as relevant emotions. Notably, five of the case studies experienced difficulty articulating their emotions, suggesting emotional difficulties. Consistent with Study Two, these drivers reported negative attributions and most had thoughts of aggressive actions they would like to take. Similarly, these drivers adopted both instrumental and hostile aggressive behaviours during the self-reported incident. Nine participants showed little or no remorse for their behaviour and these drivers also appeared to exhibit low levels of personal insight. Interestingly, few incidents were brought to the attention of the authorities. Further, examination of the person-related characteristics of these drivers indicated that they may be more likely to have come from difficult or dysfunctional backgrounds and to have a history of anti-social behaviours on and off the road. The research program has several key theoretical implications. While many of the findings supported Shinar’s (1998) frustration-aggression model, two key areas of difference emerged. Firstly, aggressive driving behaviour does not always appear to be frustration driven, but can also be driven by feelings of excitation (consistent with the tenets of the General Aggression Model). Secondly, while the findings supported a distinction being made between instrumental and hostile aggressive behaviours, the characteristics of these two types of behaviours require more examination. For example, Shinar (1998) proposes that a driver will adopt an instrumental aggressive behaviour when their progress is impeded if it allows them to achieve their immediate goals (e.g. reaching their destination as quickly as possible); whereas they will engage in hostile aggressive behaviour if their path to their goal is blocked. However, the current results question this assertion, since many of the hostile aggressive drivers studied appeared prepared to engage in hostile acts irrespective of whether their goal was blocked or not. In fact, their behaviour appeared to be characterised by a preparedness to abandon their immediate goals (even if for a short period of time) in order to express their aggression. The use of the General Aggression Model enabled an examination of the three components of the ‘present internal state’ comprising emotions, cognitions and arousal and how these influence the likelihood of a person responding aggressively to an on-road situation. This provided a detailed insight into both the cognitive and emotional aspects of aggressive driving that have important implications for the design of relevant countermeasures. For example, the findings highlighted the potential value of utilising Cognitive Behavioural Therapy with aggressive drivers, particularly the more hostile offenders. Similarly, educational efforts need to be mindful of the way that person-related factors appear to influence one’s perception of another driver’s behaviour as aggressive or benign. Those drivers with a predisposition for aggression were more likely to perceive aggression or ‘wrong doing’ in an ambiguous on-road situation and respond with instrumental and/or hostile behaviour, highlighting the importance of perceptual processes in aggressive driving behaviour.
Resumo:
Background There are minimal reports of seasonal variations in chronic heart failure (CHF)-related morbidity and mortality beyond the northern hemisphere. Aims and methods We examined potential seasonal variations with respect to morbidity and all-cause mortality over more than a decade in a cohort of 2961 patients with CHF from a tertiary referral hospital in South Australia subject to mild winters and hot summers. Results Seasonal variation across all event-types was observed. CHF-related morbidity peaked in winter (July) and was lowest in summer (February): 70 (95% CI: 65 to 76) vs. 33 (95% CI: 30 to 37) admissions/1000 at risk (p<0.005). All-cause admissions (113 (95% CI: 107 to 120) vs. 73 (95% CI 68 to 79) admissions/1000 at risk, p<0.001) and concurrent respiratory disease (21% vs. 12%,p<0.001) were consistently higher in winter. 2010 patients died, mortality was highest in August relative to February: 23 (95% CI: 20 to 27) vs. 12 (95% CI: 10 to 15) deaths per 1000 at risk, p<0.001. Those aged 75 years or older were most at risk of seasonal variations in morbidity and mortality. Conclusion Seasonal variations in CHF-related morbidity and mortality occur in the hot climate of South Australia, suggesting that relative (rather than absolute) changes in temperature drive this global phenomenon.
Resumo:
Background In an attempt to establish some consensus on the proper use and design of experimental animal models in musculoskeletal research, AOVET (the veterinary specialty group of the AO Foundation) in concert with the AO Research Institute (ARI), and the European Academy for the Study of Scientific and Technological Advance, convened a group of musculoskeletal researchers, veterinarians, legal experts, and ethicists to discuss, in a frank and open forum, the use of animals in musculoskeletal research. Methods The group narrowed the field to fracture research. The consensus opinion resulting from this workshop can be summarized as follows: Results & Conclusion Anaesthesia and pain management protocols for research animals should follow standard protocols applied in clinical work for the species involved. This will improve morbidity and mortality outcomes. A database should be established to facilitate selection of anaesthesia and pain management protocols for specific experimental surgical procedures and adopted as an International Standard (IS) according to animal species selected. A list of 10 golden rules and requirements for conduction of animal experiments in musculoskeletal research was drawn up comprising 1) Intelligent study designs to receive appropriate answers; 2) Minimal complication rates (5 to max. 10%); 3) Defined end-points for both welfare and scientific outputs analogous to quality assessment (QA) audit of protocols in GLP studies; 4) Sufficient details for materials and methods applied; 5) Potentially confounding variables (genetic background, seasonal, hormonal, size, histological, and biomechanical differences); 6) Post-operative management with emphasis on analgesia and follow-up examinations; 7) Study protocols to satisfy criteria established for a "justified animal study"; 8) Surgical expertise to conduct surgery on animals; 9) Pilot studies as a critical part of model validation and powering of the definitive study design; 10) Criteria for funding agencies to include requirements related to animal experiments as part of the overall scientific proposal review protocols. Such agencies are also encouraged to seriously consider and adopt the recommendations described here when awarding funds for specific projects. Specific new requirements and mandates related both to improving the welfare and scientific rigour of animal-based research models are urgently needed as part of international harmonization of standards.
Resumo:
An approach to pattern recognition using invariant parameters based on higher-order spectra is presented. In particular, bispectral invariants are used to classify one-dimensional shapes. The bispectrum, which is translation invariant, is integrated along straight lines passing through the origin in bifrequency space. The phase of the integrated bispectrum is shown to be scale- and amplification-invariant. A minimal set of these invariants is selected as the feature vector for pattern classification. Pattern recognition using higher-order spectral invariants is fast, suited for parallel implementation, and works for signals corrupted by Gaussian noise. The classification technique is shown to distinguish two similar but different bolts given their one-dimensional profiles
Resumo:
A new technique is proposed for learning the dynamic characteristics of a deformable object, applied in particular to the problem of lip-tracking. Experimental results are given which demonstrate that the use of dynamic models allows the system to track more robustly under adverse conditions and to correct spurious, poorly tracked frames
Resumo:
Characteristics of surveillance video generally include low resolution and poor quality due to environmental, storage and processing limitations. It is extremely difficult for computers and human operators to identify individuals from these videos. To overcome this problem, super-resolution can be used in conjunction with an automated face recognition system to enhance the spatial resolution of video frames containing the subject and narrow down the number of manual verifications performed by the human operator by presenting a list of most likely candidates from the database. As the super-resolution reconstruction process is ill-posed, visual artifacts are often generated as a result. These artifacts can be visually distracting to humans and/or affect machine recognition algorithms. While it is intuitive that higher resolution should lead to improved recognition accuracy, the effects of super-resolution and such artifacts on face recognition performance have not been systematically studied. This paper aims to address this gap while illustrating that super-resolution allows more accurate identification of individuals from low-resolution surveillance footage. The proposed optical flow-based super-resolution method is benchmarked against Baker et al.’s hallucination and Schultz et al.’s super-resolution techniques on images from the Terrascope and XM2VTS databases. Ground truth and interpolated images were also tested to provide a baseline for comparison. Results show that a suitable super-resolution system can improve the discriminability of surveillance video and enhance face recognition accuracy. The experiments also show that Schultz et al.’s method fails when dealing surveillance footage due to its assumption of rigid objects in the scene. The hallucination and optical flow-based methods performed comparably, with the optical flow-based method producing less visually distracting artifacts that interfered with human recognition.
Resumo:
Sing & Grow is a short term early intervention music therapy program for at risk families. Sing & Grow uses music to strengthen parent-child relationships by increasing positive parent-child interactions, assisting parents to bond with their children, and extending the repertoire of parents’ skills in relating to their child through interactive . Both the Australian and New Zealand governments are looking for evidence based research to highlight the effectiveness of funded programs in early childhood. As a government funded program, independent evaluation is a requirement of the delivery of the service. This paper explains the process involved in setting up and managing this large scale evaluation from engaging the evaluators and designing the project, to the data gathering stage. It describes the various challenges encountered and concludes that a highly collaborative and communicative partnership bet en researchers and clinicians is essential to ensure data can be gathered with minimal disturbance to clinical music therapy practice.
Resumo:
An experimental laboratory investigation was carried out to assess the structural adequacy of a disused PHO Class Flat Bottom Rail Wagon (FRW) for a single lane low volume road bridge application as per the design provisions of the Australian Bridge Design Standard AS 5100(2004). The investigation also encompassed a review into the risk associated with the pre-existing damage in wagons incurred during their service life on rail. The main objective of the laboratory testing of the FRW was to physically measure its performance under the same applied traffic loading it would be required to resist as a road bridge deck. In order to achieve this a full width (5.2m) single lane, single span (approximately 10m), simply supported bridge would be required to be constructed and tested in a structural laboratory. However, the available clear spacing between the columns of the loading portal frame encountered within the laboratory was insufficient to accommodate the 5.2m wide bridge deck excluding clearance normally considered necessary in structural testing. Therefore, only half of the full scale bridge deck (single FRW of width 2.6m) was able to be accommodated and tested; with the continuity of the bridge deck in the lateral direction applied as boundary constraints along the full length of the FRW at six selected locations. This represents a novel approach not yet reported in the literature for bridge deck testing to the best of the knowledge of the author. The test was carried out under two loadings provided in AS 5100 (2004) – one stationary W80 wheel load and the second a moving axle load M1600. As the bridge investigated in the study is a single lane single span low volume road bridge, the risk of pre-existing damage and the expected high cycle fatigue failure potential was assessed as being minimal and hence the bridge deck was not tested structurally for fatigue/ fracture. The high axle load requirements have instead been focussed upon the investigation into the serviceability and ultimate limit state requirements. The testing regime adopted however involved extensive recording of strains and deflections at several critical locations of the FRW. Three locations of W80 point load and two locations of the M1600 Axle load were considered for the serviceability testing; the FRW was also tested under the ultimate load dictated by the M1600. The outcomes of the experimental investigation have demonstrated that the FRW is structurally adequate to resist the prescribed traffic loadings outlaid in AS 5100 (2004). As the loading was directly applied on to the FRW, the laboratory testing is assessed as being significantly conservative. The FRW bridge deck in the field would only resist the load transferred by the running platform, where, depending on the design, composite action might exist – thereby the share of the loading which needs to be resisted by the FRW would be smaller than the system tested in the lab. On this basis, a demonstration bridge is under construction at the time of writing this thesis and future research will involve field testing in order to assess its performance.
Resumo:
As the graphics race subsides and gamers grow weary of predictable and deterministic game characters, game developers must put aside their “old faithful” finite state machines and look to more advanced techniques that give the users the gaming experience they crave. The next industry breakthrough will be with characters that behave realistically and that can learn and adapt, rather than more polygons, higher resolution textures and more frames-per-second. This paper explores the various artificial intelligence techniques that are currently being used by game developers, as well as techniques that are new to the industry. The techniques covered in this paper are finite state machines, scripting, agents, flocking, fuzzy logic and fuzzy state machines decision trees, neural networks, genetic algorithms and extensible AI. This paper introduces each of these technique, explains how they can be applied to games and how commercial games are currently making use of them. Finally, the effectiveness of these techniques and their future role in the industry are evaluated.
Resumo:
This paper describes the cloning and characterization of a new member of the vascular endothelial growth factor (VEGF) gene family, which we have designated VRF for VEGF-related-factor. Sequencing of cDNAs from a human fetal brain library and RT-PCR products from normal and tumor tissue cDNA pools indicate two alternatively spliced messages with open reading frames of 621 and 564 bp, respectively. The predicted proteins differ at their carboxyl ends resulting from a shift in the open reading frame. Both isoforms show strong homology to VEGF at their amino termini, but only the shorter isoform maintains homology to VEGF at its carboxyl terminus and conserves all 16 cysteine residues of VEGF165. Similarity comparisons of this isoform revealed overall protein identity of 48% and conservative substitution of 69% with VEGF189. VRF is predicted to contain a signal peptide, suggesting that it may be a secreted factor. The VRF gene maps to the D11S750 locus at chromosome band 11q13, and the protein coding region, spanning approximately 5 kb, is comprised of 8 exons that range in size from 36 to 431 bp. Exons 6 and 7 are contiguous and the two isoforms of VRF arise through alternate splicing of exon 6. VRF appears to be ubiquitously expressed as two transcripts of 2.0 and 5.5 kb; the level of expression is similar among normal and malignant tissues.
Resumo:
The most common human cancers are malignant neoplasms of the skin. Incidence of cutaneous melanoma is rising especially steeply, with minimal progress in non-surgical treatment of advanced disease. Despite significant effort to identify independent predictors of melanoma outcome, no accepted histopathological, molecular or immunohistochemical marker defines subsets of this neoplasm. Accordingly, though melanoma is thought to present with different 'taxonomic' forms, these are considered part of a continuous spectrum rather than discrete entities. Here we report the discovery of a subset of melanomas identified by mathematical analysis of gene expression in a series of samples. Remarkably, many genes underlying the classification of this subset are differentially regulated in invasive melanomas that form primitive tubular networks in vitro, a feature of some highly aggressive metastatic melanomas. Global transcript analysis can identify unrecognized subtypes of cutaneous melanoma and predict experimentally verifiable phenotypic characteristics that may be of importance to disease progression.
Resumo:
We consider the problem of how to construct robust designs for Poisson regression models. An analytical expression is derived for robust designs for first-order Poisson regression models where uncertainty exists in the prior parameter estimates. Given certain constraints in the methodology, it may be necessary to extend the robust designs for implementation in practical experiments. With these extensions, our methodology constructs designs which perform similarly, in terms of estimation, to current techniques, and offers the solution in a more timely manner. We further apply this analytic result to cases where uncertainty exists in the linear predictor. The application of this methodology to practical design problems such as screening experiments is explored. Given the minimal prior knowledge that is usually available when conducting such experiments, it is recommended to derive designs robust across a variety of systems. However, incorporating such uncertainty into the design process can be a computationally intense exercise. Hence, our analytic approach is explored as an alternative.
Resumo:
Conceptual modeling continues to be an important means for graphically capturing the requirements of an information system. Observations of modeling practice suggest that modelers often use multiple modeling grammars in combination to articulate various aspects of real-world domains. We extend an ontological theory of representation to suggest why and how users employ multiple conceptual modeling grammars in combination. We provide an empirical test of the extended theory using survey data and structured interviews about the use of traditional and structured analysis grammars within an automated tool environment. We find that users of the analyzed tool combine grammars to overcome the ontological incompleteness that exists in each grammar. Users further selected their starting grammar from a predicted subset of grammars only. The qualitative data provides insights as to why some of the predicted deficiencies manifest in practice differently than predicted.