534 resultados para Medical social work.


Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In 1999 Richards compared the accuracy of commercially available motion capture systems commonly used in biomechanics. Richards identified that in static tests the optical motion capture systems generally produced RMS errors of less than 1.0 mm. During dynamic tests, the RMS error increased to up to 4.2 mm in some systems. In the last 12 years motion capture systems have continued to evolve and now include high-resolution CCD or CMOS image sensors, wireless communication, and high full frame sampling frequencies. In addition to hardware advances, there have also been a number of advances in software, which includes improved calibration and tracking algorithms, real time data streaming, and the introduction of the c3d standard. These advances have allowed the system manufactures to maintain a high retail price in the name of advancement. In areas such as gait analysis and ergonomics many of the advanced features such as high resolution image sensors and high sampling frequencies are not required due to the nature of the task often investigated. Recently Natural Point introduced low cost cameras, which on face value appear to be suitable as at very least a high quality teaching tool in biomechanics and possibly even a research tool when coupled with the correct calibration and tracking software. The aim of the study was therefore to compare both the linear accuracy and quality of angular kinematics from a typical high end motion capture system and a low cost system during a simple task.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Finite Element Modeling (FEM) has become a vital tool in the automotive design and development processes. FEM of the human body is a technique capable of estimating parameters that are difficult to measure in experimental studies with the human body segments being modeled as complex and dynamic entities. Several studies have been dedicated to attain close-to-real FEMs of the human body (Pankoke and Siefert 2007; Amann, Huschenbeth et al. 2009; ESI 2010). The aim of this paper is to identify and appraise the state of-the art models of the human body which incorporate detailed pelvis and/or lower extremity models. Six databases and search engines were used to obtain literature, and the search was limited to studies published in English since 2000. The initial search results identified 636 pelvis-related papers, 834 buttocks-related papers, 505 thigh-related papers, 927 femur-related papers, 2039 knee-related papers, 655 shank-related papers, 292 tibia-related papers, 110 fibula-related papers, 644 ankle related papers, and 5660 foot-related papers. A refined search returned 100 pelvis-related papers, 45 buttocks related papers, 65 thigh-related papers, 162 femur-related papers, 195 kneerelated papers, 37 shank-related papers, 80 tibia-related papers, 30 fibula-related papers and 102 ankle-related papers and 246 foot-related papers. The refined literature list was further restricted by appraisal against a modified LOW appraisal criteria. Studies with unclear methodologies, with a focus on populations with pathology or with sport related dynamic motion modeling were excluded. The final literature list included fifteen models and each was assessed against the percentile the model represents, the gender the model was based on, the human body segment/segments included in the model, the sample size used to develop the model, the source of geometric/anthropometric values used to develop the model, the posture the model represents and the finite element solver used for the model. The results of this literature review provide indication of bias in the available models towards 50th percentile male modeling with a notable concentration on the pelvis, femur and buttocks segments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work a biomechanical model is used for simulation of muscle forces necessary to maintain the posture in a car seat under different support conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Footwear is designed to reduce injury and enhance performance. However, the effect footwear has on foot and ankle kinematics currently remains unknown. Acknowledging the need for improved understanding, the aim of this study was to describe the effect footwear has on the kinematics of a multi segment foot during stance phase of walking gait.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this research was to develop a question prompt list aimed at increasing question asking and reducing the unmet information needs of adults with primary brain tumours, and to pilot the question prompt list to determine its suitability for the intended population. Thematic analysis of existing resources was used to create a draft which was refined via interviews with 12 brain tumour patients and six relatives, readability testing and review by health professionals. A non-randomised before–after pilot study with 20 brain tumour patients was used to assess the acceptability and usefulness of the question prompt list, compared with a ‘standard brochure’, and the feasibility of evaluation strategies. The question prompt list developed covered seven main topics (diagnosis, prognosis, symptoms and changes, treatment, support, after treatment finishes and the health professional team). Pilot study participants provided with the question prompt list agreed that it was helpful (7/7), contained questions that were useful to them (7/7) and prompted them to ask their medical oncologist questions (5/7). The question prompt list is acceptable to patients and contains questions relevant to them. Research is now needed to assess its effectiveness in increasing question asking and reducing unmet information needs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The subtalar joint has been presumed to account for most of the pathologic motion in the foot and ankle, but research has shown that motion at other foot joints is greater than traditionally expected. Although recent research demonstrates the complexity of the kinematic variables in the foot and ankle, it still fails to expand our knowledge of the role of the musculotendinous structures in the biomechanics of the foot and ankle and how this is affected by in-shoe orthoses. The aim of this study was to simulate the effect of in-shoe foot orthoses by manipulation of the ground reaction force (GRF) components and centre of pressure (CoP) to demonstrate the resultant effect on muscle force in selected muscles during both the rearfoot loading response and stance phase of the gait cycle. We found that any medial wedge increases ankle joint load during gait cycle, while a lateral wedge decreases the joint load during the stance phase.

Relevância:

90.00% 90.00%

Publicador: