260 resultados para Measure of riskiness
Resumo:
Studies on quantitative fit analysis of precontoured fracture fixation plates emerged within the last few years and therefore, there is a wide research gap in this area. Quantitative fit assessment facilitates the measure of the gap between a fracture fixation plate and the underlying bone, and specifies the required plate fit criteria. For clinically meaningful fit assessment outcome, it is necessary to establish the appropriate criteria and parameter. The present paper studies this subject and recommends using multiple fit criteria and the maximum distance between the plate and underlying bone as fit parameter for clinically relevant outcome. We also propose the development of a software tool for automatic plate positioning and fit assessment for the purpose of implant design validation and optimization in an effort to provide better fitting implant that can assist proper fracture healing. The fundamental specifications of the software are discussed.
Resumo:
Background Timely diagnosis and reporting of patient symptoms in hospital emergency departments (ED) is a critical component of health services delivery. However, due to dispersed information resources and a vast amount of manual processing of unstructured information, accurate point-of-care diagnosis is often difficult. Aims The aim of this research is to report initial experimental evaluation of a clinician-informed automated method for the issue of initial misdiagnoses associated with delayed receipt of unstructured radiology reports. Method A method was developed that resembles clinical reasoning for identifying limb abnormalities. The method consists of a gazetteer of keywords related to radiological findings; the method classifies an X-ray report as abnormal if it contains evidence contained in the gazetteer. A set of 99 narrative reports of radiological findings was sourced from a tertiary hospital. Reports were manually assessed by two clinicians and discrepancies were validated by a third expert ED clinician; the final manual classification generated by the expert ED clinician was used as ground truth to empirically evaluate the approach. Results The automated method that attempts to individuate limb abnormalities by searching for keywords expressed by clinicians achieved an F-measure of 0.80 and an accuracy of 0.80. Conclusion While the automated clinician-driven method achieved promising performances, a number of avenues for improvement were identified using advanced natural language processing (NLP) and machine learning techniques.
Resumo:
Background Cancer monitoring and prevention relies on the critical aspect of timely notification of cancer cases. However, the abstraction and classification of cancer from the free-text of pathology reports and other relevant documents, such as death certificates, exist as complex and time-consuming activities. Aims In this paper, approaches for the automatic detection of notifiable cancer cases as the cause of death from free-text death certificates supplied to Cancer Registries are investigated. Method A number of machine learning classifiers were studied. Features were extracted using natural language techniques and the Medtex toolkit. The numerous features encompassed stemmed words, bi-grams, and concepts from the SNOMED CT medical terminology. The baseline consisted of a keyword spotter using keywords extracted from the long description of ICD-10 cancer related codes. Results Death certificates with notifiable cancer listed as the cause of death can be effectively identified with the methods studied in this paper. A Support Vector Machine (SVM) classifier achieved best performance with an overall F-measure of 0.9866 when evaluated on a set of 5,000 free-text death certificates using the token stem feature set. The SNOMED CT concept plus token stem feature set reached the lowest variance (0.0032) and false negative rate (0.0297) while achieving an F-measure of 0.9864. The SVM classifier accounts for the first 18 of the top 40 evaluated runs, and entails the most robust classifier with a variance of 0.001141, half the variance of the other classifiers. Conclusion The selection of features significantly produced the most influences on the performance of the classifiers, although the type of classifier employed also affects performance. In contrast, the feature weighting schema created a negligible effect on performance. Specifically, it is found that stemmed tokens with or without SNOMED CT concepts create the most effective feature when combined with an SVM classifier.
Resumo:
High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck‑boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network causing the bone strength and toughness augmentation, it apparently did not affect the mineral phase of the cortical bone material. The results also confirmed that the indirect application of high power pulsed electric field at 500 V and 10 kHz through capacitive coupling method was safe and did not destroy the bone tissue construction.
Resumo:
As part of the introduction of a broader dance medicine and science related health and wellbeing program, a 9 week mindfulness-meditation ACT-based program was delivered to all students undertaking full-time University dance training (N = 106). The aim of the program was to assist students in the further development of performance psychology skills that could be applied in both performance and non-performance settings. Participant groups were comprised of both male (N = 12) and female (N = 94) students from across all three year levels of two undergraduate dance courses, divided into three groups by mixed year levels due to timetable scheduling requirements. Pre- and post-testing was undertaken utilising the Mindful Attention Awareness Scale (MAAS-15), a uni-dimensional measure of mindfulness, in addition to qualitative questions checking the current level of awareness and understanding of mindfulness practice and its application. Weekly sessions were conducted by qualified sport and exercise psychologists and covered key practices such as: Mindfulness of Body, Mindfulness of Breathing, Mindfulness of Sounds, ACT-based and general Imagery exercises, Developing Open Awareness, Mindfulness of Emotions, and Developing Inner Stillness. Students were required to maintain a reflective journal that was utilised at the end of each weekly session, in addition to completion of a mid-Semester reflective debrief. Teaching staff additionally attended the weekly sessions and linked the mindfulness practice learnings into the student’s practical dance and academic classes where appropriate. Anecdotal feedback indicates that participation in the mindfulness-meditation sessions and the development of these mental skills has resulted in positive performance and personal outcomes. Observations collated from staff and students, results from the data collection phases and recommendations regarding future applications within dance training settings will be discussed within the presentation.
Resumo:
This study is the first to examine the effectiveness of the Fun FRIENDS programme, a school-based, universal preventive intervention for early childhood anxiety and promotion of resilience delivered by classroom teachers. Participants (N = 488) included children aged 4–7 years attending 1 of 14 Catholic Education schools in Brisbane, Australia. The schools were randomly allocated to one of three groups, the intervention, active comparison and waitlist control group. Parents completed standardized measures of anxiety and behavioural inhibition (BI), resilience, social and emotional functioning and behaviour difficulties in addition to parental stress and anxiety, at pre- and post- and 12-month follow-up. Teachers also completed a parallel measure of social and emotional strength at the three time points. Comparable results were obtained for the intervention and comparison groups; however, the intervention group (IG) achieved greater reductions in BI, child behavioural difficulties and improvements in social and emotional competence. In addition, significant improvements in parenting distress and parent–child interactions were found for the IG, with gains maintained at 12-month follow-up. Teacher reports revealed more significant improvement in social and emotional competence for the IG. Clinical implications of the findings are discussed, along with limitations and directions for future research.
Resumo:
Introduction Total scatter factor (or output factor) in megavoltage photon dosimetry is a measure of relative dose relating a certain field size to a reference field size. The use of solid phantoms has been well established for output factor measurements, however to date these phantoms have not been tested with small fields. In this work, we evaluate the water equivalency of a number of solid phantoms for small field output factor measurements using the EGSnrc Monte Carlo code. Methods The following small square field sizes were simulated using BEAMnrc: 5, 6, 7, 8, 10 and 30 mm. Each simulated phantom geometry was created in DOSXYZnrc and consisted of a silicon diode (of length and width 1.5 mm and depth 0.5 mm) submersed in the phantom at a depth of 5 g/cm2. The source-to-detector distance was 100 cm for all simulations. The dose was scored in a single voxel at the location of the diode. Interaction probabilities and radiation transport parameters for each material were created using custom PEGS4 files. Results A comparison of the resultant output factors in the solid phantoms, compared to the same factors in a water phantom are shown in Fig. 1. The statistical uncertainty in each point was less than or equal to 0.4 %. The results in Fig. 1 show that the density of the phantoms affected the output factor results, with higher density materials (such as PMMA) resulting in higher output factors. Additionally, it was also calculated that scaling the depth for equivalent path length had negligible effect on the output factor results at these field sizes. Discussion and conclusions Electron stopping power and photon mass energy absorption change minimally with small field size [1]. Also, it can be seen from Fig. 1 that the difference from water decreases with increasing field size. Therefore, the most likely cause for the observed discrepancies in output factors is differing electron disequilibrium as a function of phantom density. When measuring small field output factors in a solid phantom, it is important that the density is very close to that of water.
Resumo:
This paper discusses a method to quantify robust autonomy of Uninhabited Vehicles and Systems (UVS) in aerospace, marine, or land applications. Based on mission-vehicle specific performance criteria, we define an system utility function that can be evaluated using simulation scenarios for an envelope of environmental conditions. The results of these evaluations are used to compute a figure of merit or measure for operational efectiveness (MOE). The procedure is then augmented to consider faults and the performance of mechanisms to handle these faulty operational modes. This leads to a measure of robust autonomy (MRA). The objective of the proposed figures of merit is to assist in decision making about vehicle performance and reliability at both vehicle development stage (using simulation models) and at certification stage (using hardware-in-the-loop testing). Performance indices based on dynamic and geometric tasks associated with vehicle manoeuvring problems are proposed, and an example of a two- dimensional y scenario is provided to illustrate the use of the proposed figures of merit.
Resumo:
Aim. This paper is a report of a development and validation of a new job performance scale based on an established job performance model. Background. Previous measures of nursing quality are atheoretical and fail to incorporate the complete range of behaviours performed. Thus, an up-to-date measure of job performance is required for assessing nursing quality. Methods. Test construction involved systematic generation of test items using focus groups, a literature review, and an expert review of test items. A pilot study was conducted to determine the multidimensional nature of the taxonomy and its psychometric properties. All data were collected in 2005. Findings. The final version of the nursing performance taxonomy included 41 behaviours across eight dimensions of job performance. Results from preliminary psychometric investigations suggest that the nursing performance scale has good internal consistency, good convergent validity and good criterion validity. Conclusion. The findings give preliminary support for a new job performance scale as a reliable and valid tool for assessing nursing quality. However, further research using a larger sample and nurses from a broader geographical region is required to cross-validate the measure. This scale may be used to guide hospital managers regarding the quality of nursing care within units and to guide future research in the area.
Resumo:
The present study investigated the impact of teachers' organizational citizenship behaviours (OCBs) on student quality of school life (SQSL) via the indirect effect of job efficacy. A measure of teacher OCBs was developed, tapping one dimension of individual-focused OCB (OCBI – student-directed behaviour) and two dimensions of organization-focused OCB (OCBO – civic virtue and professional development). In line with previous research suggesting that OCBs may enhance job efficacy, as well as studies demonstrating the positive effects of teacher efficacy on student outcomes, we expected an indirect relationship between teachers OCBs and SQSL via teachers' job efficacy. Hypotheses were tested in a multi-level design in which 170 teachers and their students (N=3,057) completed questionnaires. A significant proportion of variance in SQSL was attributable to classroom factors. Analyses revealed that the civic virtue and professional development behaviours of teachers were positively related to their job efficacy. The job efficacy of teachers also had a positive impact on all five indicators of SQSL. In regards to professional development, job efficacy acted as an indirect variable in the prediction of four student outcomes (i.e., general satisfaction, student–teacher relations, achievement, and opportunity) and fully mediated the direct negative effect on psychological distress.
Resumo:
We present a novel approach to video summarisation that makes use of a Bag-of-visual-Textures (BoT) approach. Two systems are proposed, one based solely on the BoT approach and another which exploits both colour information and BoT features. On 50 short-term videos from the Open Video Project we show that our BoT and fusion systems both achieve state-of-the-art performance, obtaining an average F-measure of 0.83 and 0.86 respectively, a relative improvement of 9% and 13% when compared to the previous state-of-the-art. When applied to a new underwater surveillance dataset containing 33 long-term videos, the proposed system reduces the amount of footage by a factor of 27, with only minor degradation in the information content. This order of magnitude reduction in video data represents significant savings in terms of time and potential labour cost when manually reviewing such footage.
Resumo:
Eighteen breast cancer cell lines were examined for expression of markers of epithelial and fibroblastic differentiation: E-cadherin, desmoplakins, ZO- 1, vimentin, keratin and β1 and β4 integrins. The cell lines were distributed along a spectrum of differentiation from epithelial to fibroblastic phenotypes. The most well-differentiated, epithelioid cell lines contained proteins characteristic of desmosomal, adherens and tight junctions, were adherent to one another on plastic and in the basement membrane matrix Matrigel and were keratin-positive and vimentin-negative. These cell lines were all weakly invasive in an in vitro chemoinvasion assay. The most poorly-differentiated, fibroblastic cell lines were E-cadherin-, desmoplakin- and ZO-1-negative and formed branching structures in Matrigel. They were vimentin-positive, contained only low levels of keratins and were highly invasive in the in vitro chemoinvasion assay. Of all of the markers analyzed, vimentin expression correlated best with in vitro invasive ability and fibroblastic differentiation. In a cell line with unstable expression of vimentin, T47D(CO), the cells that were invasive were of the fibroblastic type. The differentiation markers described here may be useful for analysis of clinical specimens and could potentially provide a more precise measure of differentiation grade yielding more power for predicting prognosis.
Resumo:
Purpose The purpose of this study was to evaluate the validity of the CSA activity monitor as a measure of children's physical activity using energy expenditure (EE) as a criterion measure. Methods Thirty subjects aged 10 to 14 performed three 5-min treadmill bouts at 3, 4, and 6 mph, respectively. While on the treadmill, subjects wore CSA (WAM 7164) activity monitors on the right and left hips. (V) over dot O-2 was monitored continuously by an automated system. EE was determined by multiplying the average (V) over dot O-2 by the caloric equivalent of the mean respiratory exchange ratio. Results Repeated measures ANOVA indicated that both CSA monitors were sensitive to changes in treadmill speed. Mean activity counts from each CSA unit were not significantly different and the intraclass reliability coefficient for the two CSA units across all speeds was 0.87. Activity counts from both CSA units were strongly correlated with EE (r = 0.86 and 0.87, P < 0.001). An EE prediction equation was developed from 20 randomly selected subjects and cross-validated on the remaining 10. The equation predicted mean EE within 0.01 kcal.min(-1). The correlation between actual and predicted values was 0.93 (P < 0.01) and the SEE was 0.93 kcal.min(-1). Conclusion These data indicate that the CSA monitor is a valid and reliable tool for quantifying treadmill walking and running in children.
Resumo:
At a time when theatre practitioners and companies are concerned with dwindling audience numbers, funding and interest (so what’s new?), what this paper discusses is less about theatre ‘changing direction’ and more about ‘changing theatre Direction’. A subtle semantic shift perhaps but one which has proven enormously useful over 25 years as a professional creator, director, performer, designer and teacher for stage, screen – and other contexts. Applying theatrical skills to apparently unrelated contexts is not new, however it bears re-examining. My own experience as a ‘directorial specialist’ in mime and movement confirms the fundamental theatricality in all human communication – whether stage, screen, auditorium or meeting room – I would argue that there is no professional context completely devoid of some measure of ‘performance’. And if you’re going to do performance, however minutely, subtly and in whatever context, at least make it the best performance you can by ‘directing it’. This paper examines the adaptation of theatre direction to other contexts and discusses:- • which other contexts • directing non-performers • what theatre direction provides
Resumo:
The unique physical and movement characteristics of children necessitate the development of accelerometer equations and cut points that are population specific. The purpose of this study is to develop an ecologically valid cut point for the Biotrainer Pro monitor that reflects a threshold for moderate-intensity physical activity in elementary school children. A sample of 30 children (ages 8-12) wore a Biotrainer monitor while completing a series of 7 movement tasks (calibration phase) and while participating in an organized group activity (cross-validation phase). Videotapes from each session were processed using a computerized direct-observation technique to provide a criterion measure of physical activity. Analyses involved the use of mixed-model regression and receiver operator characteristic (ROC) curves. The results indicated that a cut point of 4 counts/min provides the optimal balance between the related needs for sensitivity (accurately detecting activity) and specificity (limiting misclassification of activity as inactivity). Results with the cross-validation data demonstrated that this value yielded the best overall kappa (.58) and a high classification agreement (84%) for activity determination. The specificity of 93% demonstrates that the proposed cut point can accurately detect activity; however, the lower sensitivity value of 61% suggests that some minutes of activity might be incorrectly classified as inactivity. The cut point of 4 counts/min provides an ecologically valid cut point to capture physical activity in children using the Biotrainer Pro activity monitor.