555 resultados para MIXED MODELS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the 1960s, the value relevance of accounting information has been an important topic in accounting research. The value relevance research provides evidence as to whether accounting numbers relate to corporate value in a predicted manner (Beaver, 2002). Such research is not only important for investors but also provides useful insights into accounting reporting effectiveness for standard setters and other users. Both the quality of accounting standards used and the effectiveness associated with implementing these standards are fundamental prerequisites for high value relevance (Hellstrom, 2006). However, while the literature comprehensively documents the value relevance of accounting information in developed markets, little attention has been given to emerging markets where the quality of accounting standards and their enforcement are questionable. Moreover, there is currently no known research that explores the association between level of compliance with International Financial Reporting Standards (IFRS) and the value relevance of accounting information. Motivated by the lack of research on the value relevance of accounting information in emerging markets and the unique institutional setting in Kuwait, this study has three objectives. First, it investigates the extent of compliance with IFRS with respect to firms listed on the Kuwait Stock Exchange (KSE). Second, it examines the value relevance of accounting information produced by KSE-listed firms over the 1995 to 2006 period. The third objective links the first two and explores the association between the level of compliance with IFRS and the value relevance of accounting information to market participants. Since it is among the first countries to adopt IFRS, Kuwait provides an ideal setting in which to explore these objectives. In addition, the Kuwaiti accounting environment provides an interesting regulatory context in which each KSE-listed firm is required to appoint at least two external auditors from separate auditing firms. Based on the research objectives, five research questions (RQs) are addressed. RQ1 and RQ2 aim to determine the extent to which KSE-listed firms comply with IFRS and factors contributing to variations in compliance levels. These factors include firm attributes (firm age, leverage, size, profitability, liquidity), the number of brand name (Big-4) auditing firms auditing a firm’s financial statements, and industry categorization. RQ3 and RQ4 address the value relevance of IFRS-based financial statements to investors. RQ5 addresses whether the level of compliance with IFRS contributes to the value relevance of accounting information provided to investors. Based on the potential improvement in value relevance from adopting and complying with IFRS, it is predicted that the higher the level of compliance with IFRS, the greater the value relevance of book values and earnings. The research design of the study consists of two parts. First, in accordance with prior disclosure research, the level of compliance with mandatory IFRS is examined using a disclosure index. Second, the value relevance of financial statement information, specifically, earnings and book value, is examined empirically using two valuation models: price and returns models. The combined empirical evidence that results from the application of both models provides comprehensive insights into value relevance of accounting information in an emerging market setting. Consistent with expectations, the results show the average level of compliance with IFRS mandatory disclosures for all KSE-listed firms in 2006 was 72.6 percent; thus, indicating KSE-listed firms generally did not fully comply with all requirements. Significant variations in the extent of compliance are observed among firms and across accounting standards. As predicted, older, highly leveraged, larger, and profitable KSE-listed firms are more likely to comply with IFRS required disclosures. Interestingly, significant differences in the level of compliance are observed across the three possible auditor combinations of two Big-4, two non-Big 4, and mixed audit firm types. The results for the price and returns models provide evidence that earnings and book values are significant factors in the valuation of KSE-listed firms during the 1995 to 2006 period. However, the results show that the value relevance of earnings and book values decreased significantly during that period, suggesting that investors rely less on financial statements, possibly due to the increase in the available non-financial statement sources. Notwithstanding this decline, a significant association is observed between the level of compliance with IFRS and the value relevance of earnings and book value to KSE investors. The findings make several important contributions. First, they raise concerns about the effectiveness of the regulatory body that oversees compliance with IFRS in Kuwait. Second, they challenge the effectiveness of the two-auditor requirement in promoting compliance with regulations as well as the associated cost-benefit of this requirement for firms. Third, they provide the first known empirical evidence linking the level of IFRS compliance with the value relevance of financial statement information. Finally, the findings are relevant for standard setters and for their current review of KSE regulations. In particular, they highlight the importance of establishing and maintaining adequate monitoring and enforcement mechanisms to ensure compliance with accounting standards. In addition, the finding that stricter compliance with IFRS improves the value relevance of accounting information highlights the importance of full compliance with IFRS and not just mere adoption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation is primarily an applied statistical modelling investigation, motivated by a case study comprising real data and real questions. Theoretical questions on modelling and computation of normalization constants arose from pursuit of these data analytic questions. The essence of the thesis can be described as follows. Consider binary data observed on a two-dimensional lattice. A common problem with such data is the ambiguity of zeroes recorded. These may represent zero response given some threshold (presence) or that the threshold has not been triggered (absence). Suppose that the researcher wishes to estimate the effects of covariates on the binary responses, whilst taking into account underlying spatial variation, which is itself of some interest. This situation arises in many contexts and the dingo, cypress and toad case studies described in the motivation chapter are examples of this. Two main approaches to modelling and inference are investigated in this thesis. The first is frequentist and based on generalized linear models, with spatial variation modelled by using a block structure or by smoothing the residuals spatially. The EM algorithm can be used to obtain point estimates, coupled with bootstrapping or asymptotic MLE estimates for standard errors. The second approach is Bayesian and based on a three- or four-tier hierarchical model, comprising a logistic regression with covariates for the data layer, a binary Markov Random field (MRF) for the underlying spatial process, and suitable priors for parameters in these main models. The three-parameter autologistic model is a particular MRF of interest. Markov chain Monte Carlo (MCMC) methods comprising hybrid Metropolis/Gibbs samplers is suitable for computation in this situation. Model performance can be gauged by MCMC diagnostics. Model choice can be assessed by incorporating another tier in the modelling hierarchy. This requires evaluation of a normalization constant, a notoriously difficult problem. Difficulty with estimating the normalization constant for the MRF can be overcome by using a path integral approach, although this is a highly computationally intensive method. Different methods of estimating ratios of normalization constants (N Cs) are investigated, including importance sampling Monte Carlo (ISMC), dependent Monte Carlo based on MCMC simulations (MCMC), and reverse logistic regression (RLR). I develop an idea present though not fully developed in the literature, and propose the Integrated mean canonical statistic (IMCS) method for estimating log NC ratios for binary MRFs. The IMCS method falls within the framework of the newly identified path sampling methods of Gelman & Meng (1998) and outperforms ISMC, MCMC and RLR. It also does not rely on simplifying assumptions, such as ignoring spatio-temporal dependence in the process. A thorough investigation is made of the application of IMCS to the three-parameter Autologistic model. This work introduces background computations required for the full implementation of the four-tier model in Chapter 7. Two different extensions of the three-tier model to a four-tier version are investigated. The first extension incorporates temporal dependence in the underlying spatio-temporal process. The second extensions allows the successes and failures in the data layer to depend on time. The MCMC computational method is extended to incorporate the extra layer. A major contribution of the thesis is the development of a fully Bayesian approach to inference for these hierarchical models for the first time. Note: The author of this thesis has agreed to make it open access but invites people downloading the thesis to send her an email via the 'Contact Author' function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Typical daily decision-making process of individuals regarding use of transport system involves mainly three types of decisions: mode choice, departure time choice and route choice. This paper focuses on the mode and departure time choice processes and studies different model specifications for a combined mode and departure time choice model. The paper compares different sets of explanatory variables as well as different model structures to capture the correlation among alternatives and taste variations among the commuters. The main hypothesis tested in this paper is that departure time alternatives are also correlated by the amount of delay. Correlation among different alternatives is confirmed by analyzing different nesting structures as well as error component formulations. Random coefficient logit models confirm the presence of the random taste heterogeneity across commuters. Mixed nested logit models are estimated to jointly account for the random taste heterogeneity and the correlation among different alternatives. Results indicate that accounting for the random taste heterogeneity as well as inter-alternative correlation improves the model performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A national-level safety analysis tool is needed to complement existing analytical tools for assessment of the safety impacts of roadway design alternatives. FHWA has sponsored the development of the Interactive Highway Safety Design Model (IHSDM), which is roadway design and redesign software that estimates the safety effects of alternative designs. Considering the importance of IHSDM in shaping the future of safety-related transportation investment decisions, FHWA justifiably sponsored research with the sole intent of independently validating some of the statistical models and algorithms in IHSDM. Statistical model validation aims to accomplish many important tasks, including (a) assessment of the logical defensibility of proposed models, (b) assessment of the transferability of models over future time periods and across different geographic locations, and (c) identification of areas in which future model improvements should be made. These three activities are reported for five proposed types of rural intersection crash prediction models. The internal validation of the model revealed that the crash models potentially suffer from omitted variables that affect safety, site selection and countermeasure selection bias, poorly measured and surrogate variables, and misspecification of model functional forms. The external validation indicated the inability of models to perform on par with model estimation performance. Recommendations for improving the state of the practice from this research include the systematic conduct of carefully designed before-and-after studies, improvements in data standardization and collection practices, and the development of analytical methods to combine the results of before-and-after studies with cross-sectional studies in a meaningful and useful way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current estimates of soil C storage potential are based on models or factors that assume linearity between C input levels and C stocks at steady-state, implying that SOC stocks could increase without limit as C input levels increase. However, some soils show little or no increase in steady-state SOC stock with increasing C input levels suggesting that SOC can become saturated with respect to C input. We used long-term field experiment data to assess alternative hypotheses of soil carbon storage by three simple models: a linear model (no saturation), a one-pool whole-soil C saturation model, and a two-pool mixed model with C saturation of a single C pool, but not the whole soil. The one-pool C saturation model best fit the combined data from 14 sites, four individual sites were best-fit with the linear model, and no sites were best fit by the mixed model. These results indicate that existing agricultural field experiments generally have too small a range in C input levels to show saturation behavior, and verify the accepted linear relationship between soil C and C input used to model SOM dynamics. However, all sites combined and the site with the widest range in C input levels were best fit with the C-saturation model. Nevertheless, the same site produced distinct effective stabilization capacity curves rather than an absolute C saturation level. We conclude that the saturation of soil C does occur and therefore the greatest efficiency in soil C sequestration will be in soils further from C saturation.