511 resultados para Light gauge steel frame walls
Resumo:
Typical high strength steels (HSS) have exceptional high strengths with improved weldability making the material attractive in modern steel constructions. However, due to lack of understanding, most of the current steel design standards are limited to conventional low strength steels (LSS, i.e. fy ≤ 450 MPa). This paper presents the details of full-scale experimental tests on short beams fabricated from BISPLATE80 HSS materials (nominal fy = 690 MPa). The various slenderness ratios of the plate elements in the test specimens were chosen in the range near the current yield limit (AS4100-1998, etc.). The experimental studies presented in this paper have produced a better understanding of the structural behaviour of HSS members subjected to local instabilities. Comparisons have also presented in the paper regarding to the design predictions from the current steel standards (AS4100-1998). This study has enabled to provide a series of proposals for proper assessment of plate slenderness limits for structural members made of representative HSS materials. This research work also enables the inclusion of further versions in the steel design specifications for typical HSS materials to be used in buildings and bridges. This paper also presents a distribution model of residual stresses in the longitudinal direction for typical HSS I-sections.
Resumo:
The Light of Gairdner is a key work of the author's exhibition Lightsite, which toured Western Australian galleries from February 2006 to November 2007. It is a five-minute-long exposure photographic image captured inside a purpose-built, room-sized pinhole camera which is demountable and does not have a floor. The Light of Gairdner depicts two brothers Allan and Harvey Lynch during their barley harvest. Allan is standing outside the pinhole camera-room in the barley field. The light from this exterior landscape is 'projected' inside the camera-room and illuminates the interior scene which includes that part of the barley field upon which the floorless room is erected, along with Harvey who is standing inside. The image evokes the temporality of light. Here, light itself is portrayed as the primary medium through which we both perceive and describe landscape. It is through the agency of light that we construct our connectivity to landscape. The exhibition/catalogue statement. "Harvey and Allan Lynch lost their father Frank, in a crop dusting crash five years ago. They now manage their dad's 6000 acre farm and are photographed here at the time of their barley harvest."
Resumo:
The Light of Gairdner 2 is a key work of the author's exhibition Lightsite, which toured Western Australian galleries from February 2006 to November 2007. It is a five-minute-long exposure photographic image captured inside a purpose-built, room-sized pinhole camera which is demountable and does not have a floor. The Light of Gairdner 2 depicts two brothers Allan and Harvey Lynch during their barley harvest. Allan is standing outside the pinhole camera-room in the barley field with their new 'CASE' harvester. The light from this exterior landscape is 'projected' inside the camera-room and illuminates the interior scene which includes that part of the barley field upon which the floorless room is erected, along with Harvey who is standing inside. The image evokes the temporality of light. Here, light itself is portrayed as the primary medium through which we both perceive and describe landscape. In this way it is through the agency of light that we construct our connectivity to landscape. The exhibition/catalogue statement. "Harvey and Allan Lynch lost their father Frank, in a crop dusting crash five years ago. They now manage their dad's 6000 acre farm and are photographed here at the time of their barley harvest. The Light of Gairdner 2 features their new 'CASE' harvester, and in the distance, the grain silos of Gairdner."
Resumo:
PURPOSE: We report our telephone-based system for selecting community control series appropriate for a complete Australia-wide series of Ewing's sarcoma cases. METHODS: We used electronic directory random sampling to select age-matched controls. The sampling has all listed telephone numbers on an up-dated CD-Rom. RESULTS: 95% of 2245 telephone numbers selected were successfully contacted. The mean number of attempts needed was 1.94, 58% answering at the first attempt. On average, we needed 4.5 contacts per control selected. Calls were more likely to be successful (reach a respondent) when made in the evening (except Saturdays). The overall response rate among contacted telephone numbers was 92.8%. Participation rates among female and male respondents were practically the same. The exclusion of unlisted numbers (13.5% of connected households) and unconnected households (3.7%) led to potential selection bias. However, restricting the case series to listed cases only, plus having external information on the direction of potential bias allow meaningful interpretation of our data. CONCLUSION: Sampling from an electronic directory is convenient, economical and simple, and gives a very good yield of eligible subjects compared to other methods.
Resumo:
A promenade performance. This research produced a unique combination of performance using electronically augmented costuming, site-specific discrete electronic lighting and video projection and sustained mountainside/top choreography. The work was examined and expanded in two subsequent peer reviewed papers which scoped out the emerging field of ‘Grounded Media’. Curator and writer Kevin Murray further accorded and enhanced these ideas in subsequent critical writing and the work was also featured in a two page major profile in RealtimeThe work was commissioned by the long established Floating Land Festival and involved extensive on-site work as well as a residency, production and artist talk series at the Noosa Art Gallery. A documentary film of the work was subsequently presented in the three-month exhibition ‘Lines of Sight’ for the Nishi Ogi Machi Media Festival, Nishiogikubo Station Platform 1, Tokyo, Japan, curated by Youkobo Art Space.
Resumo:
Cold-formed steel beams are increasingly used as floor joists and bearers in residential, industrial and commercial buildings. Their structural behaviour and moment capacities are influenced by lateral-torsional buckling and hence a research study was undertaken to investigate the lateral-torsional buckling behaviour of cold-formed steel lipped channel beams at ambient and elevated temperatures. For this purpose a finite element model of a simply supported cold-formed steel lipped channel beam under uniform bending was developed first and validated using available numberical and experimental results. It was then used in a detailed parametric study to simulate the lateral-torsional behaviour of cold-formed steel beams under varying conditions. The moment capacity results were then compared with the predictions from the current ambient temperature design rules in Australia, New Zealand, American and European codes for cold-formed steel structures. Some very interesting results have been obtained. European design rules are found to be conservative while Australian and American design rules are unsafe. This paper presents the results of finite element analyses for ambient temperature conditions, and the comparison with the current design rules.
Resumo:
A teaching and learning development project is currently under way at Queens-land University of Technology to develop advanced technology videotapes for use with the delivery of structural engineering courses. These tapes consist of integrated computer and laboratory simulations of important concepts, and behaviour of structures and their components for a number of structural engineering subjects. They will be used as part of the regular lectures and thus will not only improve the quality of lectures and learning environment, but also will be able to replace the ever-dwindling laboratory teaching in these subjects. The use of these videotapes, developed using advanced computer graphics, data visualization and video technologies, will enrich the learning process of the current diverse engineering student body. This paper presents the details of this new method, the methodology used, the results and evaluation in relation to one of the structural engineering subjects, steel structures.
Resumo:
What happens when the traditional framing mechanisms of our performance environments are removed and we are forced as directors to work with actors in digital environments that capture performance in 360 degrees? As directors contend with the challenges of interactive performance, the emergence of the online audience and the powerful influence of the games industry, how can we approach the challenges of directing work that is performance captured and presented in real time using motion capture and associated 3D imaging software? The 360 degree real time capture of performance, while allowing for an unlimited amount of framing potential, demands a unique and uncompromisingly disciplined style of direction and performance that has thus far remained unstudied and unquantified. By a close analysis of the groundbreaking work of artists like Robert Zemeckis and the Wetta Digital studio it is possible to begin to quantify what the technical requirements and challenges of 360 degree direction might be, but little has been discovered about the challenges of communicating the unlimited potential of framing and focus to the actors who work with these directors within these systems. It cannot be argued that the potential of theatrical space has evolved beyond the physical and moved into a more accessible virtual and digitised form, so how then can we direct for this unlimited potential and where do we place the focus of our directed (and captured) performance?
Resumo:
The LiteSteel Beam (LSB) is a new hollow flange channel section developed by OneSteel Australian Tube Mills using a patented Dual Electric Resistance Welding technique. The LSB has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. It is commonly used as rafters, floor joists and bearers and roof beams in residential, industrial and commercial buildings. It is on average 40% lighter than traditional hot-rolled steel beams of equivalent performance. The LSB flexural members are subjected to a relatively new Lateral Distortional Buckling mode, which reduces the member moment capacity. Unlike the commonly observed lateral torsional buckling of steel beams, lateral distortional buckling of LSBs is characterised by simultaneous lateral deflection, twist and web distortion. Current member moment capacity design rules for lateral distortional buckling in AS/NZS 4600 (SA, 2005) do not include the effect of section geometry of hollow flange beams although its effect is considered to be important. Therefore detailed experimental and finite element analyses (FEA) were carried out to investigate the lateral distortional buckling behaviour of LSBs including the effect of section geometry. The results showed that the current design rules in AS/NZS 4600 (SA, 2005) are over-conservative in the inelastic lateral buckling region. New improved design rules were therefore developed for LSBs based on both FEA and experimental results. A geometrical parameter (K) defined as the ratio of the flange torsional rigidity to the major axis flexural rigidity of the web (GJf/EIxweb) was identified as the critical parameter affecting the lateral distortional buckling of hollow flange beams. The effect of section geometry was then included in the new design rules using the new parameter (K). The new design rule developed by including this parameter was found to be accurate in calculating the member moment capacities of not only LSBs, but also other types of hollow flange steel beams such as Hollow Flange Beams (HFBs), Monosymmetric Hollow Flange Beams (MHFBs) and Rectangular Hollow Flange Beams (RHFBs). The inelastic reserve bending capacity of LSBs has not been investigated yet although the section moment capacity tests of LSBs in the past revealed that inelastic reserve bending capacity is present in LSBs. However, the Australian and American cold-formed steel design codes limit them to the first yield moment. Therefore both experimental and FEA were carried out to investigate the section moment capacity behaviour of LSBs. A comparison of the section moment capacity results from FEA, experiments and current cold-formed steel design codes showed that compact and non-compact LSB sections classified based on AS 4100 (SA, 1998) have some inelastic reserve capacity while slender LSBs do not have any inelastic reserve capacity beyond their first yield moment. It was found that Shifferaw and Schafer’s (2008) proposed equations and Eurocode 3 Part 1.3 (ECS, 2006) design equations can be used to include the inelastic bending capacities of compact and non-compact LSBs in design. As a simple design approach, the section moment capacity of compact LSB sections can be taken as 1.10 times their first yield moment while it is the first yield moment for non-compact sections. For slender LSB sections, current cold-formed steel codes can be used to predict their section moment capacities. It was believed that the use of transverse web stiffeners could improve the lateral distortional buckling moment capacities of LSBs. However, currently there are no design equations to predict the elastic lateral distortional buckling and member moment capacities of LSBs with web stiffeners under uniform moment conditions. Therefore, a detailed study was conducted using FEA to simulate both experimental and ideal conditions of LSB flexural members. It was shown that the use of 3 to 5 mm steel plate stiffeners welded or screwed to the inner faces of the top and bottom flanges of LSBs at third span points and supports provided an optimum web stiffener arrangement. Suitable design rules were developed to calculate the improved elastic buckling and ultimate moment capacities of LSBs with these optimum web stiffeners. A design rule using the geometrical parameter K was also developed to improve the accuracy of ultimate moment capacity predictions. This thesis presents the details and results of the experimental and numerical studies of the section and member moment capacities of LSBs conducted in this research. It includes the recommendations made regarding the accuracy of current design rules as well as the new design rules for lateral distortional buckling. The new design rules include the effects of section geometry of hollow flange steel beams. This thesis also developed a method of using web stiffeners to reduce the lateral distortional buckling effects, and associated design rules to calculate the improved moment capacities.