204 resultados para Janet Cardiff
Resumo:
Objective Allergic rhinitis and allergic asthma are important chronic diseases posing serious public health issues in Australia with associated medical, economic, and societal burdens. Pollen are significant sources of clinically relevant outdoor aeroallergens, recognised as both a major trigger for, and cause of, allergic respiratory diseases. This study aimed to provide a national, and indeed international, perspective on the state of Australian pollen data using a large representative sample. Methods Atmospheric grass pollen concentration is examined over a number of years within the period 1995 to 2013 for Brisbane, Canberra, Darwin, Hobart, Melbourne, and Sydney, including determination of the clinical' grass pollen season and grass pollen peak. Results The results of this study describe, for the first time, a striking spatial and temporal variability in grass pollen seasons in Australia, with important implications for clinicians and public health professionals, and the Australian grass pollen-allergic community. Conclusions These results demonstrate that static pollen calendars are of limited utility and in some cases misleading. This study also highlights significant deficiencies and limitations in the existing Australian pollen monitoring and data. Implications: Establishment of an Australian national pollen monitoring network would help facilitate advances in the clinical and public health management of the millions of Australians with asthma and allergic rhinitis.
Resumo:
Background and objective Individuals with chronic obstructive pulmonary disease (COPD) are at a high risk of developing significant complications from infection with the influenza virus. It is therefore vital to ensure that prophylaxis with the influenza vaccine is effective in COPD. The aim of this study was to assess the immunogenicity of the 2010 trivalent influenza vaccine in persons with COPD compared to healthy subjects without lung disease, and to examine clinical factors associated with the serological response to the vaccine. Methods In this observational study, 34 subjects (20 COPD, 14 healthy) received the 2010 influenza vaccine. Antibody titers at baseline and 28 days post-vaccination were measured using the hemagglutination inhibition assay (HAI) assay. Primary endpoints included seroconversion (≥4-fold increase in antibody titers from baseline) and the fold increase in antibody titer after vaccination. Results Persons with COPD mounted a significantly lower humoral immune response to the influenza vaccine compared to healthy participants. Seroconversion occurred in 90% of healthy participants, but only in 43% of COPD patients (P=0.036). Increasing age and previous influenza vaccination were associated with lower antibody responses. Antibody titers did not vary significantly with cigarette smoking, presence of other comorbid diseases, or COPD severity. Conclusion The humoral immune response to the 2010 influenza vaccine was lower in persons with COPD compared to non-COPD controls. The antibody response also declined with increasing age and in those with a history of prior vaccination.
Resumo:
Our understanding of the origin and fate of the IgE-switched B cell has been markedly improved by studies in mouse models. The immediate precursor of the IgE-switched B cell is either a relatively naive nonswitched B cell or a mature IgG-switched B cell. These 2 routes are referred to as the direct and indirect pathways, respectively. IgE responses derived from each pathway differ significantly, largely reflecting the difference in time spent in a germinal center and thus time for clonal expansion, somatic hypermutation, affinity maturation, and acquisition of a memory phenotype. The clinical and therapeutic implications for IgE responses in human subjects are still a matter of debate, largely because the immunization procedures used in the animal models are significantly different from classical atopic sensitization to allergens from pollen and mites. On the basis of the limited information available, it seems likely that these atopic IgE responses are characterized by a relatively low IgG/IgE ratio, low B-cell memory, and modest affinity maturation, which fits well with the direct switching pathway. It is still unresolved how the IgE response evolves to cover a wide epitope repertoire involving many epitopes per allergen, as well as many different allergens from a single allergen source. © 2013 American Academy of Allergy, Asthma & Immunology.
Resumo:
Allergic diseases are the most common chronic disease of the western world, costing $7.8 billion per year in lost productivity and medical care in Australia alone.1 IgE is central to the immunopathogenesis of allergic diseases and important advances are now being made on multiple fronts of IgE research. In particular, two groups independently invested in the generation of IgE reporter mice to address the vexing question of the route of development of the elusive IgE+ B cell.2, 3 Two new anti-IgE mAb targeting membrane IgE and cell-bound IgE have the potential to deplete the cellular source of IgE.4, 5 These could be candidates for alternative anti-IgE treatment options with advantages over current anti-IgE therapy (OmalizumAb), which depletes free serum IgE. Researchers are still intrigued by the modes of interaction of IgE with allergen, and with both its receptors; the high affinity FcεR1 on mast cells and basophils, and the low affinity, C-type lectin, IgE receptor, CD23,6 on B cells and monocytes (Figure 1a and b). A new approach to the study of the complexity of these interactions was recently reported by Reginald et al.7 on page 167 of this issue.
Resumo:
Background: Given that viral infections are common triggers for exacerbations of Chronic Obstructive Pulmonary Disease (COPD), current clinical guidelines recommend that all patients receive annual influenza vaccinations. A detailed examination of the immune response to vaccination in COPD has not previously been undertaken, so this study aimed to compare immune responses to influenza vaccination between COPD patients and healthy subjects. Methods: Twenty one COPD patients and fourteen healthy subjects were recruited and cellular immune function was assessed pre- and post- vaccination with trivalent inactivated influenza vaccine. Results: One month after vaccination, H1N1 specific antibody titres were significantly lower in COPD patients than in healthy controls (p=0.02). Multivariate analysis demonstrated that post vaccination antibody titres were independently associated with COPD, but not with age or smoking status. Innate immune responses to the vaccine preparation did not differ between the two populations. Serum concentrations of IL-21, a cytokine that is important for B cell development and antibody synthesis, were also lower in COPD patients than in healthy subjects (p<0.01). In vitro functional differences were also observed, with fewer proliferating B cells expressing CD27 (p=0.04) and reduced T-cell IFN-γ synthesis (p<0.01) in COPD patients, relative to healthy subjects. Conclusions: In conclusion, COPD was associated with altered immune responses to influenza vaccination compared to healthy controls with reductions in both T-cell and B-cell function. These findings provide a foundation for future research aimed at optimising the effectiveness of influenza vaccination in COPD.
Resumo:
Bahia grass, Paspalum notatum, is an important pollen allergen source with a long season of pollination and wide distribution in subtropical and temperate regions. We aimed to characterize the 55. kDa allergen of Bahia grass pollen (BaGP) and ascertain its clinical importance. BaGP extract was separated by 2D-PAGE and immunoblotted with serum IgE of a grass pollen-allergic patient. The amino-terminal protein sequence of the predominant allergen isoform at 55. kDa had similarity with the group 13 allergens of Timothy grass and maize pollen, Phl p 13 and Zea m 13. Four sequences obtained by rapid amplification of the allergen cDNA ends represented multiple isoforms of Pas n 13. The predicted full length cDNA for Pas n 13 encoded a 423 amino acid glycoprotein including a signal peptide of 28 residues and with a predicted pI of 7.0. Tandem mass spectrometry of tryptic peptides of 2D gel spots identified peptides specific to the deduced amino acid sequence for each of the four Pas n 13 cDNA, representing 47% of the predicted mature protein sequence of Pas n 13. There was 80.6% and 72.6% amino acid identity with Zea m 13 and Phl p 13, respectively. Reactivity with a Phl p 13-specific monoclonal antibody AF6 supported designation of this allergen as Pas n 13. The allergen was purified from BaGP extract by ammonium sulphate precipitation, hydrophobic interaction and size exclusion chromatography. Purified Pas n 13 reacted with serum IgE of 34 of 71 (48%) grass pollen-allergic patients and specifically inhibited IgE reactivity with the 55. kDa band of BaGP for two grass pollen-allergic donors. Four isoforms of Pas n 13 from pI 6.3-7.8 had IgE-reactivity with grass pollen allergic sera. The allergenic activity of purified Pas n 13 was demonstrated by activation of basophils from whole blood of three grass pollen-allergic donors tested but not control donors. Pas n 13 is thus a clinically relevant pollen allergen of the subtropical Bahia grass likely to be important in eliciting seasonal allergic rhinitis and asthma in grass pollen-allergic patients.
Resumo:
Background: Rhinoviruses (RV) are key triggers in acute asthma exacerbations. Previous studies suggest that men suffer from infectious diseases more frequently and with greater severity than women. Additionally, the immune response to most infections and vaccinations decreases with age. Most immune function studies do not account for such differences, therefore the aim of this study was to determine if the immune response to rhinovirus varies with sex or age. Methods: Blood mononuclear cells were isolated from 63 healthy individuals and grouped by sex and age (≤50 years old and ≥52 years old). Cells were cultured with rhinovirus 16 at a multiplicity of infection of 1. The chemokine IP-10 was measured at 24 h as an index of innate immunity while IFNγ and IL-13 were measured at 5 days as an index of adaptive immunity. Results: Rhinovirus induced IFNγ and IL-13 was significantly higher in ≤50 year old women than in age matched men (p < 0.02 and p < 0.05) and ≥52 year old women (p < 0.02 and p > 0.005). There was no sex or age based difference in rhinovirus induced IP-10 expression. Both IFNγ and IL-13 were negatively correlated with age in women but not in men. Conclusions: This study suggests that pre-menopausal women have a stronger adaptive immune response to rhinovirus infection than men and older people, though the mechanisms responsible for these differences remain to be determined. Our findings highlight the importance of gender and age balance in clinical studies and in the development of new treatments and vaccines.
Resumo:
Bahia grass, Paspalum notatum, is a clinically important subtropical grass with a prolonged pollination season from spring to autumn. We aimed to clone and characterise the major Bahia grass pollen allergen, Pas n 1. Grass pollen-allergic patients presenting to a tertiary hospital allergy clinic were tested for IgE reactivity with Bahia grass pollen extract by skin prick testing, ImmunoCAP, ELISA and immunoblotting. Using primers deduced from the N-terminal peptide sequence of a group 1 allergen of Bahia grass pollen extract separated by two-dimensional gel electrophoresis, the complete Pas n 1 cDNA was obtained by rapid amplification of cDNA ends and cloned. Biological relevance of recombinant Pas n 1 expressed in Escherichia coli was assessed by serum IgE reactivity and basophil activation. Twenty-nine of 34 (85%) consecutive patients presenting with grass pollen allergy were skin prick test positive to Bahia grass pollen. The Pas n 1 cDNA has sequence homology with the β-expansin 1 glycoprotein family and is more closely related to the maize pollen group 1 allergen (85% identity) than to ryegrass Lol p 1 or Timothy grass Phl p 1 (64 and 66% identity, respectively). rPas n 1 reacted with serum IgE in 47 of 55 (85%) Bahia grass pollen-allergic patients, activated basophils and inhibited serum IgE reactivity with the 29 kDa band of Bahia grass pollen extract. In conclusion the cDNA for the major group 1 allergen of the subtropical Bahia grass pollen, Pas n 1, was identified and cloned. rPas n 1 is immunologically active and is a valuable reagent for diagnosis and specific immunotherapy of grass pollen allergy.
Resumo:
Ross River (RR) virus is an alphavirus endemic to Australia and New Guinea and is the aetiological agent of epidemic polyarthritis or RR virus disease. Here we provide evidence that RR virus uses the collagen-binding α1β1 integrin as a cellular receptor. Infection could be inhibited by collagen IV and antibodies specific for the β1 and α1 integrin proteins, and fibroblasts from α1-integrin-/- mice were less efficiently infected than wild-type fibroblasts. Soluble α1β1 integrin bound immobilized RR virus, and peptides representing the α1β1 integrin binding-site on collagen IV inhibited virus binding to cells. We speculate that two highly conserved regions within the cell-receptor binding domain of E2 mimic collagen and provide access to cellular collagen-binding receptors.
Resumo:
Two monoclonal antibodies (mAb) CB268 and CII-C1 to type II collagen (CII) react with precisely the same conformational epitope constituted by the residues ARGLT on the three chains of the CII triple helix. The antibodies share structural similarity, with most differences in the complementarity determining region 3 of the heavy chain (HCDR3). The fine reactivity of these mAbs was investigated by screening two nonameric phage-displayed random peptide libraries. For each mAb, there were phage clones (phagotopes) that reacted strongly by ELISA only with the selecting mAb, and inhibited binding to CII only for that mAb, not the alternate mAb. Nonetheless, a synthetic peptide RRLPFGSQM corresponding to an insert from a highly reactive CII-C1-selected phagotope, which was unreactive (and non-inhibitory) with CB268, inhibited the reactivity of CB268 with CII. Most phage-displayed peptides contained a motif in the first part of the molecule that consisted of two basic residues adjacent to at least one hydrophobic residue (e.g. RRL or LRR), but the second portion of the peptides differed for the two mAbs. We predict that conserved CDR sequences interact with the basic-basic-hydrophobic motif, whereas non-conserved amino acids in the binding sites (especially HCDR3) interact with unique peptide sequences and limit cross-reactivity. The observation that two mAbs can react identically with a single epitope on one antigen (CII), but show no cross-reactivity when tested against a second (phagotope) indicates that microorganisms could exhibit mimics capable of initiating autoimmunity without this being evident from conventional assays.
Resumo:
Purified proteins are mandatory for molecular, immunological and cellular studies. However, purification of proteins from complex mixtures requires specialised chromatography methods (i.e., gel filtration, ion exchange, etc.) using fast protein liquid chromatography (FPLC) or high-performance liquid chromatography (HPLC) systems. Such systems are expensive and certain proteins require two or more different steps for sufficient purity and generally result in low recovery. The aim of this study was to develop a rapid, inexpensive and efficient gel-electrophoresis-based protein purification method using basic and readily available laboratory equipment. We have used crude rye grass pollen extract to purify the major allergens Lol p 1 and Lol p 5 as the model protein candidates. Total proteins were resolved on large primary gel and Coomassie Brilliant Blue (CBB)-stained Lol p 1/5 allergens were excised and purified on a secondary "mini"-gel. Purified proteins were extracted from unstained separating gels and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot analyses. Silver-stained SDS-PAGE gels resolved pure proteins (i.e., 875 μg of Lol p 1 recovered from a 8 mg crude starting material) while immunoblot analysis confirmed immunological reactivity of the purified proteins. Such a purification method is rapid, inexpensive, and efficient in generating proteins of sufficient purity for use in monoclonal antibody (mAb) production, protein sequencing and general molecular, immunological, and cellular studies.
Resumo:
Primary biliary cirrhosis (PBC) and autoimmune cholangitis (AIC) are serologic expressions of an autoimmune liver disease affecting biliary ductular cells. Previously we screened a phage-displayed random peptide library with polyclonal IgG from 2 Australian patients with PBC and derived peptides that identified a single conformational (discontinuous) epitope in the inner lipoyl domain of the E2 subunit of the pyruvate dehydrogenase complex (PDC-E2), the characteristic autoantigen in PBC. Here we have used phage display to investigate the reactivity of PBC sera from 2 ethnically and geographically distinct populations, Japanese and Australian, and the 2 serologic expressions, PBC and AIC. Random 7-mer and 12-mer peptide libraries were biopanned with IgG from 3 Japanese patients with PBC and 3 with AIC who did not have anti-PDC-E2. The phage clones (phagotopes) obtained were tested by capture enzyme-linked immunosorbent assay (ELISA) for reactivity with affinity-purified anti-PDC-E2, and compared with those obtained from Australian patients with PBC. Peptide sequences of the derived phagotopes and sequences derived by biopanning with irrelevant antisera were aligned to develop a guide tree based on physicochemical similarity. Both Australian and Japanese PBC-derived phagotopes were distributed in branches of the guide tree that contained the peptide sequences MH and FV previously identified as part of an immunodominant conformational epitope of PDC-E2, indicating that epitope selection was not influenced by the racial origin of the PBC sera. Biopanning with either PBC or AIC-derived IgG yielded phagotopes that reacted with anti-PDC-E2 by capture ELISA, further establishing that there is a similar autoimmune targeting in PBC and AIC.
Resumo:
The major diabetes autoantigen, glutamic acid decarboxylase (GAD65), contains a region of sequence similarity, including six identical residues PEVKEK, to the P2C protein of coxsackie B virus, suggesting that cross-reactivity between coxsackie B virus and GAD65 can initiate autoimmune diabetes. We used the human islet cell mAbs MICA3 and MICA4 to identify the Ab epitopes of GAD65 by screening phage-displayed random peptide libraries. The identified peptide sequences could be mapped to a homology model of the pyridoxal phosphate (PLP) binding domain of GAD65. For MICA3, a surface loop containing the sequence PEVKEK and two adjacent exposed helixes were identified in the PLP binding domain as well as a region of the C terminus of GAD65 that has previously been identified as critical for MICA3 binding. To confirm that the loop containing tile PEVKEK sequence contributes to the MICA3 epitope, this loop was deleted by mutagenesis. This reduced binding of MICA3 by 70%. Peptide sequences selected using MICA4 were rich in basic or hydroxyl-containing amino acids, and the surface of the GAD65 PLP-binding domain surrounding Lys358, which is known to be critical for MICA4 binding, was likewise rich in these amino acids. Also, the two phage most reactive width MICA4 encoded the motif VALxG, and the reverse of this sequence, LAV, was located in this same region. Thus, we have defined the MICA3 and MICA4 epitopes on GAD65 using the combination of phage display, molecular modeling, and mutagenesis and have provided compelling evidence for the involvement of the PEVKEK loop in the MICA3 epitope.
Resumo:
The chemokine receptor CCR5 contains seven transmembrane-spanning domains. It binds chemokines and acts as co-receptor for macrophage (m)-tropic (or R5) strains of HIV-1. Monoclonal antibodies (mAb) to CCR5, 3A9 and 5C7, were used for biopanning a nonapeptide cysteine (C)-constrained phage-displayed random peptide library to ascertain contact residues and define tertiary structures of possible epitopes on CCR5. Reactivity of antibodies with phagotopes was established by enzyme-linked immunosorbent assay (ELISA). mAb 3A9 identified a phagotope C-HASIYDFGS-C (3A9/1), and 5C7 most frequently identified C-PHWLRDLRV-C (5C7/1). Corresponding peptides were synthesized. Phagotopes and synthetic peptides reacted in ELISA with corresponding antibodies and synthetic peptides inhibited antibody binding to the phagotopes. Reactivity by immunofluorescence of 3A9 with CCR5 was strongly inhibited by the corresponding peptide. Both mAb 3A9 and 5C7 reacted similarly with phagotopes and the corresponding peptide selected by the alternative mAb. The sequences of peptide inserts of phagotopes could be aligned as mimotopes of the sequence of CCR5. For phage 3A9/1, the motif SIYD aligned to residues at the N terminus and FG to residues on the first extracellular loop; for 5C7/1, residues at the N terminus, first extracellular loop, and possibly the third extracellular loop could be aligned and so would contribute to the mimotope. The synthetic peptides corresponding to the isolated phagotopes showed a CD4-dependent reactivity with gp120 of a primary, m-tropic HIV-1 isolate. Thus reactivity of antibodies raised to CCR5 against phage-displayed peptides defined mimotopes that reflect binding sites for these antibodies and reveal a part of the gp120 binding sites on CCR5.
Resumo:
Phage display is an advanced technology that can be used to characterize the interactions of antibody with antigen at the molecular level. It provides valuable data when applied to the investigation of IgE interaction with allergens. The aim of this rostrum article is to provide an explanation of the potential of phage display for increasing the understanding of allergen- IgE interaction, the discovery of diagnostic reagents, and the development of novel therapeutics for the treatment of allergic disease. The significance of initial studies that have applied phage display technology in allergy research will be highlighted. Phage display has been used to clone human IgE to timothy grass pollen allergen Phl p 5, to characterize the epitopes for murine and human antibodies to a birch pollen allergen Bet v 1, and to elucidate the epitopes of a murine mAb to the house dust mite allergen Der p 1. The technology has identified peptides that functionally mimic sites of human IgE constant domains and that were used to raise antiserum for blocking binding of IgE to the FcεRI on basophils and subsequent release of histamine. Phage display has also been used to characterize novel peanut and fungal allergens. The method has been used to increase our understanding of the molecular basis of allergen-IgE interactions and to develop clinically relevant reagents with the pharmacologic potential to block the effector phase of allergic reactions. Many advances from these early studies are likely as phage display technology evolves and allergists gain expertise in its research applications.